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Figure 1. Top Row: Class-agnostic object detection (OD) performance of pre-trained Multi-modal Vision Transformer (MViT) [28] across
multiple domains (natural images [14,17,18,37], satellite images [67], sketches, cartoons and paintings [25]). The MViTs [20,28] perform
well on diverse datasets using human intuitive natural language text queries (e.g., all objects, all entities). Bottom Row: Class-agnostic
detectors (MViTs) can be applied to several downstream applications. In Open-world OD [27], unknown pseudo labels generated using
MDETR [28] can improve novelty detection. For unsupervised object localization, replacing Selective Search proposals [60] in DETReg [3]
pretraining with only top-30 MViT proposals leads to improved localization. For Salient and Camouflaged OD, task specific text queries
like ‘all salient objects’ and ‘all camouflage objects’ can help perform competitively against fully supervised models without any task
specific tuning. Overall, MViTs achieve the state-of-the-art results on various applications.

Abstract
What constitutes an object? This has been a long-

standing question in computer vision. Towards this goal,
numerous learning-free and learning-based approaches
have been developed to score objectness. However, they
generally do not scale well across new domains and for
unseen objects. In this paper, we advocate that exist-
ing methods lack a top-down supervision signal governed
by human-understandable semantics. To bridge this gap,
we explore recent Multi-modal Vision Transformers (MViT)
that have been trained with aligned image-text pairs. Our
extensive experiments across various domains and novel
objects show the state-of-the-art performance of MViTs to
localize generic objects in images. Based on these find-
ings, we develop an efficient and flexible MViT architec-
ture using multi-scale feature processing and deformable
self-attention that can adaptively generate proposals given
a specific language query. We show the significance of MViT
proposals in a diverse range of applications including open-
world object detection, salient and camouflage object detec-
tion, supervised and self-supervised detection tasks. Fur-
ther, MViTs offer enhanced interactability with intelligible
text queries. Code: https://git.io/J1HPY .

*Equal contribution

1. Introduction

The recent years have witnessed significant advances in
object detection (OD) [39] based on developments of large-
scale annotated datasets and carefully designed deep learn-
ing models. Notably, efforts have been made to tackle more
difficult cases such as universal OD [62], long-tailed ob-
ject distribution modeling [19] and open-world OD [27]. In
contrast, little progress has been made towards a seemingly
simpler task of class-agnostic OD in recent years. In the
era of fully trainable pipelines, class-agnostic object detec-
tion [1] is still often approached using traditional bottom-up
approaches such as Selective Search [60], EdgeBox [79],
DeepMask [46] and MCG [48].

Despite being a seemingly simpler problem in terms of
the two-way classification space, the class-agnostic OD task
is indeed challenging from the representation learning per-
spective. The main challenge is to model the vast diver-
sity of all valid object classes and delineating such a diverse
group from the background class which itself has vague se-
mantic definition [2]. Our experiments indicate that this
intrinsic complexity of the task makes it difficult to de-
sign fully trainable class-agnostic OD models that can work
across domains and for novel unseen objects. Although the
bottom-up approaches offer proposals for generic objects,
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they come at the cost of a prohibitively large number of can-
didate boxes, low-precision, lack of semantic understanding
and slow processing, making them less scalable to generic
operation in the wild. More recently, self-supervised learn-
ing frameworks – based on both ViTs [3, 11] and CNNs
[68, 69] – have solely focused on promoting better local-
ization of generic objects, however they still show modest
performance on class-agnostic OD [3]. Our intuition is that
top-down supervisory signals are necessary to resolve the
ambiguous nature of class-agnostic OD task, which is pre-
cisely what is missing from the aforementioned approaches.

In this paper, we bring out the capacity of recent Multi-
modal Vision Transformers (MViTs) to propose generic
class-agnostic OD across different domains. The high-level
information provided by the language descriptions helps
learn fairly generalizable properties of universal object cate-
gories. In turn, the MViTs perform exceptionally well com-
pared to uni-modal object detectors trained for generic ob-
ject detection as well as the traditional bottom-up object
proposal generation schemes. Due to the multi-modal na-
ture of these models, we design language-driven queries
to discover valid objects in a human-understandable format
that can be adapted to explore varied aspects of the object
semantic space. With the state-of-the-art performance, an
ensuing question is to explore the root cause of such gener-
alization for the ‘concept of objects’ embedded in MViTs.
Through a series of systematic experiments, we find that it
is the language skeleton/structure (rather than the lexicon it-
self) that defines this strong understanding of generic object
definition within MViT models. As an interesting example,
when the MViT is trained without actual captions, but just
the bounding boxes corresponding to a natural language de-
scription, the model still demonstrates strong class-agnostic
OD generalization. These insights on the interactive class-
agnostic OD mechanism can be deployed in several down-
stream tasks such as novel object discovery, saliency detec-
tion, self-supervised learning and open-world detection.

The main highlights of this work include:

• We demonstrate the state-of-the-art performance of pre-
trained MViTs [20, 28] towards class-agnostic OD via
a set of human-understandable natural language queries.
We also develop an efficient and flexible MViT model,
Multi-modal Deformable Detection Transformer (MDef-
DETR), which can effectively locate generic objects.
Through an extensive set of systematic experiments, we
analyze the factors that majorly contribute to the im-
proved performance of MViTs (Secs. 3 & 4).

• We benchmark the generalization of MViT based ob-
ject detectors on diverse domains e.g., natural images,
sketches, cartoons, satellite imagery and paintings and
show their favorable performance compared to existing
class-agnostic OD models (bottom-up approaches, CNN
and ViT based uni-modal learned pipelines) (Sec. 3).

• We demonstrate applicability of class-agnostic detectors
to various down-stream applications: Open-world OD,
Salient OD, Camouflaged OD and Self-supervised learn-
ing. Furthermore, when these proposals are combined
with RPN proposals in two-stage detectors, it can lead to
overall performance improvements due to their rich top-
down semantic understanding of image content (Sec. 5).

2. Multi-modal ViTs
In this work, we bring out the generalization capacity of

Multi-modal ViTs (MViT) to tackle generic OD. The ca-
pability of relating natural language with visual features
helps MViTs to generalize to novel concepts, achieving
state-of-the-art results on class-agnostic OD using human-
understandable text queries (‘all objects/entities’). Be-
fore a detailed analysis, we provide background on MViTs
and propose Modulated Deformable DETR (MDef-DETR).
(a) GPV: Gupta et al. proposed GPV-I [20], a unified ar-
chitecture for multi-task learning, where the task is inferred
from the text prompt. It takes an image and a task descrip-
tion as input and outputs text with the corresponding bound-
ing boxes. This model is based on DETR [5] and trains on
data from five different tasks including visual question an-
swering (VQA), captioning, localization, classification and
referring expression. GPV uses pretrained BERT [12] to
encode the text, concatenates it with the region descriptors
from DETR and passes it to ViLBERT [41] co-attention lay-
ers for cross-modal conceptualization. It predicts relevance
scores for each predicted box indicating the importance of
the region for the prompted task. An output text decoder
is used conditioned on the relevance scores for better cross-
modal understanding (Fig. 2 (a)).
(b) MDETR: Kamath et al. [28] proposed an end-to-end
modulated transformer trained to detect objects in an image
conditioned on a text query. In MDETR, visual and text
features are extracted from a convolutional backbone (e.g.,
ResNet-101 [23] or EfficientNet [59]) and a language model
(RoBERTa [40]) respectively. These features are then con-
catenated and passed to the DETR [5] model for detection
(Fig. 2 (b)). MDETR uses soft token prediction and con-
trastive alignment in latent space for addressing text condi-
tioned object detection. In soft token prediction, a uniform
probability distribution is predicted over all text tokens for
each detected object. In contrastive alignment, the embed-
ded object queries from decoder are aligned with the text
representation from encoder. This multi-modal alignment
makes the object embeddings closer to the corresponding
text embeddings in feature space. The model is pre-trained
with 1.3M image-text pairs and achieves the state-of-the-
art results on various vision-language downstream tasks in-
cluding VQA, referring expression and phrase grounding.
(c) M-Deformable DETR: Fig. 2 (c) shows our overall de-
sign. Below, we highlight main features of MDef-DETR:
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Figure 2. Architecture overview of MViTs used in this work – GPV-1 [20], MDETR [28] and MDef-DETR (ours). GPV-1 takes image
along with a task description as input and outputs relevant region boxes and text. MDETR uses soft token prediction and contrastive
alignment in latent space for cross-conceptualization using aligned image-text pairs. MDef-DETR utilizes multi-scale image features with
multi-scale deformable attention module (MSDA) from [78], and uses late-fusion strategy for multi-modal fusion.

−Multi-scale Deformable Attention (MSDA). MDETR [28]
finds it challenging to scale to high-resolution feature maps
due to a fixed self-attention design. Further, it operates on
a specified spatial scale which can be sub-optimal for small
objects. Here, we explore a variant based on Deformable
DETR (Def-DETR) [5] that employs multi-scale feature
processing in its MSDA module and dynamically attends
to relevant pixel locations for context aggregation. This de-
sign uses Deformable Attention that samples a small set of
keys around a reference (query) image location. The sparse
key sampling in Def-DETR achieves linear complexity with
respect to the size of the image feature maps.
−Multi-modal Fusion. MSDA module utilizes the spatial
structure of an image to sparsely sample keys for each query
point. Following the MDETR strategy of concatenating
text embeddings with flattened features would destroy the
spatial structure of an image. Hence, we fuse text in the
MDef-DETR model after the inputs are processed through
the Def-DETR encoder-decoder architecture using a late
fusion mechanism. Specifically, the query representations
from deformable decoder are concatenated with the text em-
beddings, and passed through a series of transformer self-
attention (SA) blocks. This is consistent with the recent
vision-language fusion works [41, 56–58]. Using the train-
ing procedure of [5], the output head is applied after each
SA block and the total loss is calculated by adding all aux-
iliary losses. We note that no explicit contrastive alignment
of object query representation and encoded text is required
in this approach. Experimental results show fast conver-
gence (only half iterations) and competitive performance
of MDef-DETR against MDETR (Table 1 and 2).

3. Multi-modal ViTs as Generic Detectors

The class-agnostic OD seeks to differentiate between
generic objects and background in images. This task in-
volves learning the notion of objectness. Existing ap-
proaches typically explore low-level visual cues (i.e. super-

Dataset→ Pascal-VOC COCO KITTI
Model ↓ AP50 R50 AP50 R50 AP50 R50

Edge Boxes 0.08 7.14 0.09 5.16 0.09 6.58
Selective Search 0.32 21.35 0.27 12.72 0.03 4.85
Deep Mask 5.92 40.39 2.16 19.22 1.33 15.50

Faster-RCNN 42.88 85.84 26.36 58.66 23.50 53.23
RetinaNet 43.15 86.55 24.59 59.10 30.43 57.60
Def-DETR 30.06 81.04 19.99 53.50 23.69 55.00

GPV-I 61.94 91.12 47.41 70.52 42.98 64.43
MDETR 66.04 90.10 40.66 62.15 46.71 67.24
MDef-DETR 68.59 91.26 43.64 65.03 48.22 63.53

Table 1. Class-agnostic OD performance of MViTs in comparison
with traditional bottom-up approaches and uni-modal detectors
trained to localize generic objects. We report average precision
(AP) and Recall (R) at IoU threshold of 0.5. The MViTs achieve
state-of-the-art results using intuitive text queries (Sec. 5.1).

pixels, edges, etc.) or directly learn the mapping between
images and generic object locations using fully trainable
pipelines learned with bounding box annotations [3, 26, 60,
79]. We note that these procedures lack high-level seman-
tic information necessary to relate objects across diverse
scenes to derive a comprehensive and general notion of uni-
versal objects. In this work, we explore the class-agnostic
OD capacity of MViTs trained using aligned image-text
pairs (Sec. 2). We observe these models can produce high
quality object proposals by using intuitive text queries like
‘all objects’ and ‘all entities’. This shows their capabil-
ity to relate natural language with visual concepts to model
generic objectness, enabling them to discover novel cate-
gories and generalize across different domains while offer-
ing human interaction with intelligible text queries.

3.1. Class-agnostic Object Detection

Table 1 shows the object proposal generation perfor-
mance of MViTs with the traditional bottom-up approaches
and the end-to-end supervised deep learning methods on
three commonly used natural image OD datasets (Pascal
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Dataset→ Kitchen Clipart Comic Watercolor DOTA†

Model ↓ AP50 R50 AP50 R50 AP50 R50 AP50 R50 AP50 R50

RetinaNet 35.33 89.53 27.03 89.97 33.07 86.14 47.78 91.90 0.72 15.58
GPV-1 24.53 84.79 35.11 86.11 42.29 83.62 50.32 89.54 0.55 9.33
MDETR 38.38 91.38 44.94 90.69 55.82 89.45 63.59 94.32 1.94 21.80
MDef-DETR 45.43 90.99 50.59 92.86 57.72 89.20 63.78 95.16 2.86 24.23

Table 2. Class-agnostic OD performance
of MViTs in comparison with RetinaNet
[36] on several out-of-domain datasets.
MViTs show consistently good results on all
datasets. †Proposals on DOTA [67] are gen-
erated by multi-scale inference. (Sec. A.2)

VOC [14], MS COCO [37] and KITTI [17]). The bottom-
up approaches considered for comparison include Edge-
Boxes [79], Selective Search [60] and DeepMask [46] while
Faster-RCNN [51], RetinaNet [36] and Deformable-DETR
[78] are selected from the deep-learning based methods
due to the state-of-the-art performance in class-aware OD.
These detectors are trained in a class-agnostic manner us-
ing the dataset used for pretraining in MDETR [28]. The
MViTs considered are GPV-I [20] and MDETR [28] along-
side our proposed MDef-DETR (see Sec. 2 for details).

We report both average precision (AP) and Recall at IoU
threshold of 0.5 using the top-50 boxes from each method.
The results demonstrate that the detectors trained in class-
agnostic fashion perform reasonably well on all datasets,
surpassing the bottom-up methods by a large margin. Con-
currently, the MViTs perform better than the uni-modal ap-
proaches with the use of simple human understandable nat-
ural language text queries. This performance shows MViTs’
strong understanding of language obtained from the pre-
trained language model (BERT [12], RoBERTa [40]) along
with the aligned image-text pairs used in pretraining.

For MViTs, interestingly a relatively small number of
boxes match the quality achieved by a much larger proposal
set obtained from competing methods. Fig. 3 shows the
recall rates obtained by varying the number of top object
proposals for all methods on two datasets. MViTs achieve
competitive recall even with only top-10 proposals.

Figure 3. Effect of using different number of top-ranked boxes on
multiple class-agnostic OD methods. The MViTs exhibits good
recall even with only top-10 and top-30 object proposal.

3.2. How well MViTs generalize?

Generalization to New Domains: We extend our anal-
ysis from natural image datasets (Sec. 3.1) to rule out if
MViT representations are biased towards natural images,
for which these models are originally trained on. To this
end, we evaluate on universal OD datasets [62] belonging

to five different domains (Table 2). The studied domains
include indoor kitchen scenes [18], cartoon images, water-
color drawings, clipart, comics [25] and satellite/aerial im-
ages (DOTA dataset) [67]. The experiments follow the same
setting as in Sec. 3.1. These results indicate the generaliza-
tion capability of MViTs in comparison to the best proposal
generation methods earlier evaluated in Table 1.

Generalization to Rare/Novel Classes: With the notion
of objectness, humans are capable of identifying novel and
rare objects, although they may not recognize their specific
category. Similarly, scalabiltiy to rare and novel classes is a
desired quality of an object proposal algorithm. To analyze
this, the class-agnostic OD mechanism of MDef-DETR is
evaluated on rare categories from Open-Images [49] versus
frequent categories. The results in Fig. 4 indicate the state-
of-the-art recall rates on categories such as lynx, humidifier,
and armadillo with as few as zero training instance. Overall,
the model generalizes well to rare/unseen categories.

4. What makes MViTs a Generic Detector?

Our empirical analysis shows the state-of-the-art perfor-
mance of MViTs towards class-agnostic OD across differ-
ent domains (Sec. 3). Having established this, we conduct a
series of systematic experiments to explore the contributing
factors for representational learning of the general ‘object-
ness measure’ in MViTs. Specifically, we identify the role
of supervision and multi-modal learning as crucial factors.

Figure 4. MDef-DETR class-agnostic OD performance on rarely
and frequently occurring categories in the pretraining captions.
Rare categories, selected from Open Image [49], are shown on left
and frequent categories are shown on right. The numbers on top
of bars indicate the occurrences of the category in the pretraining
dataset. The MViT achieves good recall values even for the classes
with no or very few occurrences in the training dataset.
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4.1. On the importance of supervision

To understand the role of supervision provided via
aligned image-text pairs during training, we evaluate per-
formance of similar architectures trained in an unsupervised
manner (Table 3). We consider two recent unsupervised
learning models, DETReg [3] and UP-DETR [11]. DE-
TReg trains Deformable DETR [78] to localize objects in
class-agnostic fashion, with bounding box pseudo labels
from an off-the-shelf region proposal method (Selective
Search [60]). Meanwhile, UP-DETR performs unsuper-
vised pretraining on random query patches in an image for
class-agnostic OD. Both the unsupervised models, DETReg
and UP-DETR, are trained on ImageNet-1K [52] dataset.
Further, we consider a supervised uni-modal (Deformable
DETR [78]) trained on MDETR pretraining dataset in class-
agnostic fashion, to evaluate the performance contributed
by language supervision. We note that the image-level su-
pervision with only box labels improves the performance in
comparison with unsupervised methods. However, the use
of caption texts aligned with input images proves to be vital
and improves the performance approximately by two times,
highlighting the importance of multi-modal supervision.

Dataset→ Pascal-VOC COCO KITTI
Model ↓ Supervision AP50 R50 AP50 R50 AP50 R50

UP-DETR × 0.56 16.61 0.19 6.56 0.001 0.65
DETReg × 2.58 45.73 2.04 26.00 0.009 2.48

Def-DETR X 30.06 81.04 19.99 53.50 23.69 55.00
MDef-DETR X 68.59 91.26 43.64 65.03 48.22 63.53

Table 3. class-agnostic OD results of MDef-DETR versus unsu-
pervised object proposal methods (UP-DETR [11] and DETReg
[3]) and supervised uni-modal method (Def-DETR [78]). The
MViT achieves state-of-the-art class-agnostic OD performance.

4.2. How much does language contribute?

Given the importance of multi-modal supervision to-
wards better performance, we find it pertinent to explore
the benefit solely coming from the language supervision.
We conduct an ablation study on MDETR [28] and MDef-
DETR (ours), by removing all textual inputs corresponding
to the caption, but keeping intact the structure introduced
by language i.e., learning to localize boxes corresponding
to a single caption for each image in an iteration (without
any language branch). Both MDETR and MDef-DETR are
trained with a large aligned image-text paired dataset con-
sisting of approximately 118K images and corresponding
1.25M captions and their bounding box annotations. Here,
the structure in which the information is fed during training
is of high importance to us. Each image may have multi-
ple captions, and hence it may be seen multiple times in the
same iteration, but with varying contexts. The experimental
setup removes all captions during training and evaluations,
however keeps the described data loader structure intact,
thus having approximately 1.25M iterations in an epoch.

All models use a ResNet-101 backbone and are evaluated
after 10 epochs. Evaluations presented in Table 4 indicate
that visual branch plays a vital role, however the importance
of language can not be ruled out since the boxes related to
a caption are still seen together. We analyze the importance
of this implicit language structure next.

Dataset→ Pascal-VOC COCO KITTI
Model ↓ Lang. AP50 R50 AP50 R50 AP50 R50

MDETR X 63.87 87.99 38.10 58.50 42.49 60.93
MDef-DETR X 65.03 89.09 39.33 62.03 39.04 61.04

MDETR × 59.74 86.37 33.37 57.94 36.91 54.97
MDef-DETR × 61.58 86.71 34.43 58.27 36.50 58.89

Table 4. Effect of removing language branch from MViTs keep-
ing the data loader structure intact. All the experiments are run
for 10 epochs. The removal of language branch does not effect
MViTs’ performance largely since the language structure is still
intact (boxes related to a caption are seen together).

Ablation on language structure: The above experimental
results reveal that removal of textual information does not
significantly affect the performance of the model. However,
a further ablation on the structure introduced by language in
the training pipeline is required for the completeness of this
evaluation. As such, we conduct ablations at five levels us-
ing Deformable DETR [78], as shown in Table 5. First, all
the annotations are combined at an image level by concate-
nating the bounding boxes of all captions corresponding to
an image (Setting-1). This removes any prior information
introduced by the language structure. Then, class-agnostic
non-maximum suppression (NMS) is applied at a thresh-
old of 0.9 to filter boxes that have high overlaps (Setting-
2). To imitate the repetitive pattern introduced during train-
ing, bounding box annotations corresponding to an image
are randomly sampled and grouped (Setting-3). The num-
ber of samples in a combination is kept close to the aver-
age number of boxes in each image-text pair during origi-
nal MDETR training (∼6 boxes). Finally, a longer training
schedule is used in the same setting to replicate a scenario
closer to the original MDETR training (Setting-4). These
four settings are then compared with a model that is trained
without any captions, but maintains the structure introduced
by language (Setting-5, same as Table 4 last row).

This analysis indicates that language structure has a sig-
nificant impact in learning a general notion of objectness.
With the use of aligned image-text pairs, additional contex-
tual information is provided to the model. As objects gener-
ally tend to co-occur with other objects and certain scenes,
such contexual association can be exploited for visual un-
derstanding [44]. Use of captions that describe a scene con-
veys such a notion of co-occurring objects and their mu-
tual relationships, indicating that the structure introduced by
language provides rich semantic and spatial context. Con-
sistent with our findings, other recent efforts also indicate

5



Pascal-VOC MSCOCO KITTI
Experiment

Language
Structure AP50 R50 AP50 R50 AP50 R50

Setting-1 × 16.15 74.50 10.66 46.97 19.44 57.30
Setting-2 × 30.05 81.04 20.00 53.50 23.69 54.99
Setting-3 × 33.81 82.54 19.29 55.77 21.23 52.73
Setting-4 × 35.06 82.72 21.23 56.34 21.50 58.54

Setting-5 X 61.58 86.71 34.43 58.27 36.50 58.89

Table 5. Experimental analysis to explore the contribution of lan-
guage by removing all textual inputs, but maintaining the struc-
ture introduced by captions. Experiments are performed on Def-
DETR [78] using MDETR [28] pretraining data. In setting 1, an-
notations corresponding to same images are combined. Setting 2
has an additional NMS applied to remove duplicate boxes. In set-
ting 3, four to eight boxes are randomly grouped in each iteration.
The same model is trained longer in setting 4. In setting 5, the
MDETR dataloader structure is kept intact. Results from setting 5
demonstrate the importance of structure introduced by language.

strong generalization achieved using the context encoded
within natural language [50, 73, 75, 77].

5. Applications and Use-cases
5.1. Enhanced Interactability

We have observed MViTs can generate high quality ob-
ject proposals with intuitive human understandable queries
such as ‘all objects’. This motivates us to explore the lan-
guage semantic space of such models to construct a set of
queries that can well capture the generic concept of object-
ness. We filter words from captions that are semantically
close to the word ‘object’ in the linguistic feature space. We
then utilize these words to construct intuitive text queries
such as ‘all objects’, ‘all entities’, ‘all visible entities

and objects’, and ‘all obscure entities and objects’, for
exploiting the class-agnostic OD performance of MViTs.
The detections from the individual text queries are com-
bined, filtered with class-agnostic NMS to remove duplicate
detections, and the top N boxes are selected for evaluation.

Table 6 shows the effect of using different text queries
in comparison with the combined detections across three
datasets (Pascal VOC [14], MS COCO [37] and KITTI
[17]). The results indicate that different text queries exploit
varying aspects of objectness, and a global context can be
captured using combined detections. This also reduces the
dataset biasness to a specific query which in turn helps to
perform reasonably well across different domains. More-
over, adding ‘all small objects’ query improves perfor-
mance on KITTI which has more small-sized objects.
Task specific queries: The detection of small and irreg-
ular sized objects has remained a long-standing challenge.
In our case, the flexible nature of MViTs facilitates using
a range of human-understandable text queries. The queries
can be chosen that best describe the special requirements
needed in a given detection task. We demonstrate certain
scenarios of how this feature can be exploited for better pre-

Dataset→ Pascal-VOC COCO KITTI
Text Query ↓ AP50 R50 AP50 R50 AP50 R50

all objects 51.33 85.51 33.33 58.36 40.19 63.96
all entities 65.18 88.38 34.56 54.55 41.48 59.47
all visible entities & objects 63.33 88.93 37.94 61.58 41.96 62.95
all obscure entities & objects 59.51 86.57 35.15 59.08 42.36 63.53
all small objects 40.02 83.90 28.85 58.86 40.42 65.20

combined detections (CD) 63.72 90.97 41.97 65.13 48.22 63.53
CD w/o ‘all small objects’ 68.59 91.26 43.64 65.03 45.78 61.64

Table 6. Effect of using different intuitive text queries on the
MDef-DETR class-agnostic OD performance. Combining detec-
tions from multiple queries captures varying aspects of objectness.

dictions. Fig. 5 (left) shows an interesting case of how the
text query ‘all little objects’ improves recall for small ob-
jects as compared to a rather general text query. Similarly,
Fig. 5 (right) indicates how the use of special queries like
‘all long objects’ help improve the detection of irregular
shaped objects (without any dataset specific fine-tuning!).

Figure 5. Left: MDef-DETR recall for small, medium and large
objects across three datasets. The use of specific query like ‘all
little objects’ increases the recall of small objects across different
datasets. Right: Targeted detections by the relevant text queries.

5.2. Open-world Object Detection

The open-world setting assumes a realistic paradigm
where a model can experience unknown objects during
training and inference [4, 13, 27, 61]. The goal is to iden-
tify unknowns and incrementally learn about them as and
when new annotations are provided about a subset of un-
knowns. This stands in contrast to generic OD where mod-
els are trained to label unknown objects as background and
only focus on the known objects. Here, we explore how a
generic class-agnostic OD model can help with the open-
world task to identify unknowns. As a case study, we apply
our approach to a recent open-world detector (ORE) [27].
−ORE Setting: The authors distributed the 80 COCO [37]
classes in four incremental learning tasks where 20 classes
have been added to the known categories in each subse-
quent task. At each stage, the model must learn from the
given subset of 20 newly introduced known classes, should
not forget the previous known classes and must be able to
detect unknown classes whose labelled examples have not
been provided so far as the unknowns. ORE uses Faster-
RCNN [51] as the base detector, with contrastive clustering
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Task ID Task 1 Task 2 Task 3 Task 4
mAP mAP mAP mAP

Pseudo Label
for Unknown

Current
Known

R50
Unknown

Previously
Known

Current
Known Both

R50
Unknown

Previously
Known

Current
Known Both

R50
Unknown

Previously
Known

Current
Known Both

RPN 63.44 14.40 58.28 30.78 45.09 11.32 43.33 23.37 36.68 14.79 37.20 20.73 33.08
MDef-DETR∗ 64.03 50.13 61.57 30.81 46.19 49.54 43.77 22.71 36.75 50.89 36.22 20.57 32.31

Table 7. Effect of using class-agnostic OD proposals from MDef-DETR for pseudo labelling of unknowns in ORE [27]. MDef-DETR∗ is
a version of MDef-DETR trained on a filtered dataset generated by removing all captions listing any of 60 unknown categories evaluated
in ORE. The results indicate a notable improvement in unknown performance when trained using unknown pseudo labels from the MViT.

in latent space and an energy-based classification head for
unknown detection. It utilizes example-replay strategy [63]
for alleviating forgetting, when progressively learning the
unknown categories once their labels become available.
−Unknown Pseudo Labels with MViTs: ORE exploits the
two-stage mechanism of Faster-RCNN [51] and uses pro-
posals from the class-agnostic region proposal network
(RPN) for pseudo labelling of unknowns. The foreground
object proposals with high objectness score which do not
overlap with any ground truth are labelled as unknowns. We
note that since RPN is only trained on the objects of inter-
est, its detections are overly sparse and lead to a low recall
for unknowns. The pipeline therefore lacks a good proposal
set that generalizes to all objects. We propose a variant of
ORE, by using class-agnostic proposals for unknown object
categories obtained from MDef-DETR. For fair compari-
son, the MViT is trained on a filtered dataset, generated by
explicitly removing all captions that contain any unknown
category, leaving 0.76M image-text pairs. Results in Table 7
and Fig. 6 indicate improvement in unknown detection.

Figure 6. Top: Qualitative results of ORE [27] unknown detec-
tions when trained with RPN [51] versus MDef-DETR unknown
pseudo labels. Bottom: class-agnostic OD of DETReg [3] when
trained using Selective Search [60] versus MDef-DETR proposals.

5.3. Pretraining for Class-aware Object Detection

The recent progress in self-supervised learning (SSL)
[6, 21, 43, 74] has minimized the need for large labelled
datasets to achieve good performance on downstream tasks.
These techniques primarily encode the global image repre-
sentation and achieve competitive generalization on various
downstream tasks. However, these methods are suboptimal
for class-aware OD, where the classification needs to be per-
formed at local image patches (i.e. bounding boxes). Sev-

eral recent efforts have been reported to address this chal-
lenge. ReSim [68] and DetCo [69] only pretrain the back-
bone to encode local and global representations. Whereas
DETReg [3] pretrains both the backbone and detection net-
work using off-the-shelf proposals from selective search
[60] and achieves improvement over the previous methods.

Dataset→ Pascal-VOC 10% Pascal-VOC 100%
Model ↓ AP AP50 AP75 AP AP50 AP75

DETReg - SS 51.40 72.20 56.60 63.50 83.30 70.30
DETReg - MDef-DETR 58.78 80.46 65.65 64.51 84.16 71.29

Table 8. Effect of using MDef-DETR proposals for pre-training of
DETReg [3] instead of Selective Search [60] proposals. Pretrain-
ing using MDef-DETR proposal increases DETReg downstream
performance on VOC dataset using both 10% and 100% data.

However, the proposals from heuristic selective search
method, used in DETReg pretraining, are overly noisy and
contain redundant boxes. We show that replacing these
noisy pseudo labels with MViT proposals can improve the
downstream performance on OD task (Table 8). Following
DETReg, we select top 30 proposals from MDef-DETR and
pretrain the model for 50 epochs on ImageNet [52] dataset,
followed by fine-tuning on 10% and 100% Pascal VOC [14]
data for 150 and 100 epochs respectively. The results show
a gain of ∼ 7 and ∼ 1 in AP in the two respective cases.

5.4. Salient Object Detection

Given the generalized class-agnostic performance of
MViTs on multiple domains, we evaluate their ability to dis-
tinguish between salient and non-salient parts of an image.
We exploit the interactive nature of MViTs by passing spe-
cific queries to detect the salient objects. To this end, MDef-
DETR proposals generated with queries like ‘all salient

objects’ are compared with PoolNet [38] and CPD [66]
models that are specifically trained for predicting saliency
maps. We evaluate the models on salient object datasets
DUT-OMRON [72] and ECSSD [53]. These datasets are
only used for MViT evaluation and are not used during
training. Since MViTs generate bounding boxes, we convert
the saliency ground truths and the saliency maps predicted
by CPD and PoolNet to bounding boxes using connected
components labelling [65]. In the case of DUT-OMRON,
the provided ground truth bounding boxes are used by com-
puting an average across the five human annotations.
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Table 9 indicates the effectiveness of MDef-DETR in de-
tecting the foreground salient objects. It is also interesting
to note how the task specific†† query provides better predic-
tion of salient parts of the image in comparison to a more
generic† query like ‘all objects’ (Fig. 7).

Dataset→ DUT-OMRON ECSSD
Model ↓ Text Query AP50 R50 AP50 R50

CPD [66] - 64.45 77.40 87.10 92.70
PoolNet [38] - 66.49 78.80 87.37 93.07
MDef-DETR General† 66.95 89.05 84.52 95.69
MDef-DETR Task specific†† 75.52 93.26 85.70 96.07

Table 9. Proposals from MDef-DETR for Salient OD (SOD) task
in comparison with the state-of-the-art saliency approaches. The
MViT achieves top performance using task specific†† query, that
combines detections from ‘all salient objects’ and ‘all fore-

ground objects’ despite not explicitly trained on SOD task.

Figure 7. Qualitative results of MDef-DETR for Salient OD (top
row) and Camouflaged OD (bottom row) tasks. The ground truth
masks along with the generated ground truth bounding boxes are
shown on top right of the images. The MViT shows good perfor-
mance on the challenging salient and camouflaged OD tasks.

5.5. Camouflaged Object Detection

Camouflaged object detection (COD) involves identify-
ing objects that are seamlessly embedded in their back-
ground. The objects have a similar texture to their sur-
roundings and are difficult to locate compared to salient or
generic objects. Here, we explore the interactive OD capac-
ity of MViTs on COD task by evaluating the performance of
MDef-DETR against the state-of-the-art model (SINET-V2
[15]) on CHAMELEON [55], CAMO [32] and COD10K
[16] datasets (Table 10). Similar to salient OD setting,
we convert camouflage ground truth masks and masks pre-
dicted by SINET-V2 to bounding boxes using connected
components labelling [65]. However, the available bound-
ing box ground truths have been used for COD10K dataset.
We note favorable performance of MDef-DETR proposals
for the challenging COD task, although the model is not
specifically trained on camouflaged objects (Fig. 7).

5.6. Improving Two-stage Object Detection

The class-agnostic object proposals from MViTs have
strong understanding of semantics and can be deployed
along with the region proposal networks (RPN) [51]. We

Dataset→ CHAMELEON CAMO COD10K
Model ↓ Text Query AP50 R50 AP50 R50 AP50 R50

SINET-V2 [15] - 67.29 76.67 56.51 77.21 44.44 66.55
MDef-DETR General† 30.24 53.33 46.49 75.37 39.55 67.78
MDef-DETR Task specific†† 36.16 61.11 48.04 78.31 41.98 69.13

Table 10. Proposals from MDef-DETR on the Camouflaged OD
task. Despite being off-the-shelf proposals, the MViT proposals
show good class-agnostic OD performance. For task specific††

inference, the detections are combined from ‘all camouflage ob-

jects’ and ‘all disguise objects’ text queries, while the general†

query corresponds to the detections from ‘all objects’ query.

observe an improvement in accuracy when off-the-shelf
MDef-DETR proposals are combined with RPN proposals
in Faster RCNN [51] during inference (Fig. 8). This indi-
cates the complimentary nature of these proposals that is
based on a rich top-down perception of the image content.

Fig. 8 shows the results of replacing RPN proposals in
Faster RCNN with DETReg [3] and MDef-DETR propos-
als. The results indicate that the supervised proposal gener-
ation methods (RPN and MDef-DETR) perform well com-
pared to the unsupervised method (DETReg). However, off-
the-shelf MDef-DETR proposals show better performance
than RPN when using a small number of proposals (e.g., 10
proposals). Moreover, combining RPN and MDef-DETR
proposals improves the overall detection accuracy.

Figure 8. Complimentary effect of using off-the-shelf proposals
from MDef-DETR in Faster RCNN [51] trained on COCO [37],
indicated as ‘combined’ (i.e., RPN + MDef-DETR). The x-axis
shows the number of proposals used during inference by the cor-
responding methods. MDef-DETR generates good quality propos-
als, which perform well even with small proposal set sizes.

6. Conclusion
This paper demonstrates intriguing performance of

MViTs, trained only on natural images, for generic OD
across a diverse set of domains. We systematically study
the main reasons for this generalization, and note that the
language structure available in image-caption pairs used to
train MViTs plays a key role. Based on these insights,
we develop a more flexible and efficient MViT for off-the-
shelf class-agnostic OD, that can be instantiated with dif-
ferent text queries to generate desired proposal sets. Fur-
thermore, we show various use-cases where class-agnostic
proposals can be used to improve performance e.g., open-
world OD, camouflaged and salient OD, supervised and
self-supervised OD.
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Appendix
In this section, we provide additional details regarding,

• Implementation details (Appendix A)
• Limitations (Appendix B)
• Qualitative results (Appendix C)
• Additional results (Appendix D)
• Related works (Appendix E)

A. Implementation Details
A.1. MDef-DETR

Similar to MDETR [28], we train MDef-DETR on ap-
proximately 1.25M aligned image-text pairs. The dataset is
the same as used to pretrain MDETR on the modulated de-
tection task. We train MDef-DETR for 20 epochs following
the same hyper-parameters as in MDETR. Moreover, learn-
ing rates of 1e-4 and 1e-5 are used for the backbone and
transformer respectively, which decays by a factor of 10 af-
ter 16 epochs. All the MDETR and MDef-DETR models
are trained with ImageNet [52] pretrained ResNet-101 [23]
backbone, if not mentioned explicitly.

Unlike MDETR which requires 40 training epochs for
convergence, our MDef-DETR converges only in 20 epochs
with better class-agnostic object detection (OD) accuracy.
However, the inference for MDef-DETR is approximately
30% slower (see Table 11).

Model Epochs Parameters Inference FPS COCO AP50

MDETR 40 185M 13.02 40.66
MDef-DETR 20 188M 8.95 43.64

Table 11. Comparison of MDETR [28] and MDef-DETR (ours)
in terms of convergence epochs, parameters, inference speed and
class-agnostic OD performance on COCO [37] dataset. MDef-
DETR converges in half epochs with better accuracy at the cost
of slightly slower inference. The FPS are measured on a Quadro
RTX 6000 GPU by averaging the time for 1K inference passes.

A.2. MViTs as Class Agnostic Object Detectors

We explore the interactive nature of multi-modal vi-
sion transformers (MViTs) for class-agnostic OD task. We
construct intuitive natural language text queries by explor-
ing the language semantic space of MViTs using an open-
source natural language processing (NLP) library, spacy

[24]. Specifically, we found words closer to the word
‘object’ in semantic language space and constructed mul-
tiple queries for the class-agnostic OD task. The detected
boxes from multiple text queries are combined, a class-
agnostic non-maximum suppression (NMS) at IoU thresh-
old of 0.5 is applied and top ‘N ’ boxes are selected for
evaluation. We use N = 50 and report average preci-
sion and recall at IoU threshold of 0.5 in all experiments.
For the salient and camouflaged object detection (SOD and
COD) tasks, we only consider boxes with objectness scores
of greater than 0.7.

For Pascal VOC [14], COCO [37], Clipart, Comic and
Watercolor [25], we use combined detections from queries
‘all objects’, ‘all entities’, ‘all visible entities and ob-

jects’, and ‘all obscure entities and objects’. Whereas,
we also include ‘all small objects’ text query for the eval-
uation on KITTI [17], Kitchen [18] and DOTA [67] be-
cause these datasets have a large number of small sized ob-
jects. Additionally multi-scale evaluation is used for DOTA
dataset due to a very significant scale variations in satellite
imagery. Here the original image is split into 8 equal crops
and the detections are combined by running inference on
each crop. We observe that performing multi-scale infer-
ence improves the performance on DOTA where there are
more tiny objects as compared to other datasets.

A.3. Detection of Small Objects

We observe that the targeted queries like ‘all small ob-

jects’ and ‘all little objects’ can improve the detection
accuracy of small objects as compared to a rather general
text query ‘all objects’. For quantitative comparison, all
objects covering less than 5% of the image area are consid-
ered small, between 5% and 20% are considered medium
and greater than 20% are considered large.

A.4. Open-world Object Detection

The proposals from MDef-DETR are used to gener-
ate the pseudo labels for unknown categories in Open-
world Object Detector (ORE) [27] training. To avoid any
data leakage, MDef-DETR is trained with a filtered dataset
which is obtained by removing all the captions that contain
any of the 60 unknown categories in ORE task-1. This fil-
tering leaves us with a dataset having approximately 0.76M
(out of 1.25M) image-text pairs. MDef-DETR is trained
from scratch on this filtered dataset for 20 epochs and
then used to produce unknown pseudo labels using class-
agnostic object proposals.

To do so, firstly, the proposals with objectness score
less than 0.7 are discarded. Secondly, all proposals hav-
ing an IoU greater than 0.5 with any ground truth bound-
ing box of a known category are removed. The rest of
the proposals potentially belong to unknown categories and
are used to supervise unknown detections in ORE training.

12



Figure 9. Illustration of MDef-DETR detections on the DeepLe-
sion [71] dataset. The green boxes indicate the ground truth
bounding box enclosing the lesion on the CT images and the red
boxes are the class-agnostic predictions. The samples indicate a
failure case of class-agnostic detection of MViT’s on lesion detec-
tion dataset.

All the relevant codes and annotations will be available at
https://git.io/J1HPY.

B. Limitations
Although MViTs (GPV-1 [20], MDETR [28] and MDef-

DETR) show state-of-the-art class-agnostic OD perfor-
mance across various dataset domains, they cannot be di-
rectly adapted to specialized out-of-domain detection tasks
such as in medical imaging. In medical domain, lesion
detection task involves locating the congenital malforma-
tions in different types of medical images including X-
rays, CT scans, MRI scans and Ultrasoud. These appli-
cations require specialized data along with expert super-
vision (obtained from well-trained domain specialists) to
perform well. Hence, in most cases, the general class-
agnostic OD methods (e.g. MViTs) cannot be used in these
applications directly. We evaluate the class-agnostic OD
performance of MDef-DETR on DeepLesion [71] dataset
(Fig. 9). We observe that such problems in medical imaging
are not well addressed by the generic class-agnostic detec-
tion mechanism of MViTs trained on out-of-domain natural
images. The ground truth annotations represented by the
green boxes in Fig. 9, indicate that the target lesions do not
well represent the concept of an object, and require expert
based supervision to identify the abnormalities.

C. Qualitative Results
We present examples of class-agnostic predictions of

MDETR and MDef-DETR across multiple domains, in-
cluding natural image dataset Pascal VOC [14], MS COCO
[37], autonomous driving dataset KITTI [17], sketches,
painting and cartoons [25] and indoor Kitchen dataset [18]
in Fig. 10. The detections are generated using the natural
language text query, ‘all objects’.

In Fig. 11, we present some qualitative examples of
class-agnostic OD with DETReg [3] trained using off-the-
shelf proposals from Selective Search [60] in comparison
with DETReg trained using MDef-DETR proposals. Fig. 12
shows some examples of improved Open-world detector

(ORE) trained with MDef-DETR unknown pseudo labels.
The images on the left of each example correspond to the
ORE trained with unknown pseudo labels from RPN and
on the right correspond to the ORE trained with unknown
pseudo labels from MDef-DETR. The visualizations indi-
cate that the improved model is better capable of detecting
unknowns. Additionally, it reduces the miss-classifications
of unknown categories with other known categories. For
example, the second sample in Fig. 12 (top row - right
side), corresponds to a sample in task 3 where ‘laptop’ be-
longs to the unknown categories set, was miss-classified
as ‘TV’, which is however correctly classified as an un-
known with the improved model. This is advantageous
as it can better aid continual learning, i.e., the model can
learn about the unknown categories when additional infor-
mation about the unknowns are obtained via supervision. In
Fig. 13, we present examples of qualitative results obtained
for salient OD and camouflaged OD with specif queries, ‘all

salient objects’ and ‘all camouflaged objects’ respec-
tively, along with the bounding box annotations from the
ground truth masks.

D. Additional Results

D.1. Salient Object Detection

A common formulation of deep learning based Salient
Object Detection (SOD) approaches is to predict a saliency
map for each input image. We evaluate MDef-DETR
against state-of-the art SOD approaches by converting the
bounding box predictions of the the MViT model to masks
using a COCO [37] trained Mask-RCNN [22] mask head.
These converted masks are evaluated against the saliency
predictions of PoolNet [38] and CPD [66] models on DUT-
OMRON [72] and ECSSD [53] datasets (Table 12).

Dataset→ DUT-OMRON ECSSD
Model MAE ↓ F-b ↑ MAE ↓ F-b ↑
CPD [66] 0.057 0.794 0.040 0.936
PoolNet [38] 0.054 0.866 0.038 0.954
MDef-DETR(Ours) 0.206 0.639 0.235 0.656

Table 12. Segmentation based evaluation of MDef-DETR on
salient object detection in comparison with the state-of-the-art
saliency approaches. The bounding box predictions of MDef-
DETR for text query, ’all salient objects’ are converted to masks
using COCO [37] trained mask head of Mask-RCNN [22].

D.2. Camouflaged Object Detection

In this section we compare camouflaged masks predic-
tions of SINET-V2 [15] with MDef-DETR. Similar to SOD
task, the bounding box predictions from the MViT are con-
verted to object masks using the mask head of COCO
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(a) Pascal VOC [14] (b) MS COCO [37]

(c) Comic [25] (d) Clipart [25]

(e) Watercolor [25] (f) DOTA [67]

(g) Kitchen [18]

(h) KITTI [17]

Figure 10. class-agnostic detections of MViTs (MDETR [28] and MDef-DETR) on Pascal VOC (10a), MS COCO (10b), Comic (10c),
Clipart (10d), Watercolor (10e), DOTA (10f), Kitchen (10g), KITTI (10h) dataset.

[37] trained Mask-RCNN [22] model. Following [16], S-
measure (Sα), E-measure (Eφ), weighted F-measure (Fwβ )
and mean absolute error (MAE) of mask predictions are re-
ported in Table 13.

D.3. Effect of Various Backbones

ResNet vs. EfficientNet: We explore the class-agnostic
OD performance of MViTs for different convolutional

Model Sα ↑ Eφ ↑ Fwβ ↑ MAE ↓

SINET-V2 [15] 0.783 0.867 0.660 0.042
MDef-DETR(ours) 0.491 0.533 0.275 0.267

Table 13. Comparison of masks prediction results of state-of-the-
art COD model [15] with MDef-DETR. MDef-DETR proposals
generated using ‘all comouflage objects’ query are converted to
masks using COCO [37] trained mask head of Mask-RCNN [22].
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Figure 11. Class-agnostic OD performance of DETReg [3] trained using Selective Search [60] versus MDef-DETR proposals. The images
on the left side of each example correspond to DETreg trained with Selective search and the images on the right side correspond to the one
trained with MDef-DETR that results in better localized predictions.

Figure 12. Qualitative results of unknown detections in ORE [27] when trained using RPN (left) versus MDef-DETR (right) unknown
pseudo labels. Using proposals from MDef-DETR as unknown pseudo labels improves the prediction of unknowns.

Figure 13. Qualitative results of MDef-DETR for Salient OD (left) and Camouflaged OD (right) tasks. The ground truth masks along with
the generated bounding boxes are shown on top right of the images.

15



Dataset Pascal VOC COCO KITTI Kitchen Clipart Comic Watercolor DOTA
Model AP50 R-50 AP50 R-50 AP50 R-50 AP50 R-50 AP50 R-50 AP50 R-50 AP50 R-50 AP50 R-50

MDETR-R101 66.04 90.10 40.66 62.15 46.71 67.24 38.38 91.38 44.94 90.69 55.82 89.45 63.59 94.32 1.94 21.80
MDETR-E5 69.61 90.01 42.34 61.28 48.06 65.21 53.26 91.50 62.34 92.73 69.86 90.46 74.40 94.98 3.71 24.88

Table 14. Class-agnostic object detection performance of MDETR [28] for different convolutional backbones. The results indicate that the
use of strong backbone improves the results especially on the out-of-domain (Kitchen [18], Calipart, Comic, Watercolor [25]) datasets.

backbones. Following [28], we compare the ResNet-
101 [23] taken from Torchvision with EfficientNet-E5 [59]
taken from Timm Library [64]. The ResNet model is
trained on ImageNet [52] and achieves 77.4% top-1 accu-
racy on ImageNet validation, while the EfficientNet model
is trained using Noisy-Student [70] on an additional 300M
unlabelled images achieving 85.1% top-1 accuracy on Ima-
geNet validation.

Table 14 indicates that using a stronger backbone im-
proves the class-agnostic OD accuracy across different
dataset domains. The performance boost is significant for
out of domain datasets, Kitchen [18], Clipart, Comic and
Watercolor [25], indicating better generalization of MViT
when trained using a stronger backbone.

E. Related work
Class-Agnostic Detection: The class-agnostic OD is rela-
tively less studied compared to class-aware detection. How-
ever, many object proposal generation algorithms have been
proposed, since it remains a critical step in many applica-
tions like recognition and detection. The proposal genera-
tion algorithms can be categorized into three categories: (a)
bottom-up segmentation based, (b) edge information based
and (c) data-driven approaches based on deep neural net-
work (DNN) architectures. In the first category that uses
segmentation to derive proposals, multiple pixel groupings
(superpixels) are merged according to various heuristics.
Alexe et al. proposed an objectness [2] scoring method that
combines various low-level features such as edges, color
and superpixels to score object proposals. Selective Search
[60] uses multiple hierarchical segmentations based on su-
perpixels for object proposals. Similarly, MCG [48] uses
segment hierarchy to group regions. Among the second
category approaches, EdgeBoxes [79] scores bounding box
proposals based on contours that the boxes enclose. BING
algorithm [10, 76] generates binary features based on edge
information for fast objectness estimation.

DNNs have also been investigated for generating object
proposals. DeepBox [31] proposes a network that can be
used to rerank any bottom-up proposals, e.g. the ones gener-
ated by EdgeBox [79]. DeepMask [46] generates rich object
segmentations and an associated score of the likelihood of
the patch to fully contain a centered object. A refinement of
this method is proposed in SharpMask [47]. Alternatively,
Ren et al. proposed region proposal network (RPN) [51] for

generating object proposals, that identifies a set of regions
that potentially contain objects along with corresponding
objectness score. These are then refined for classification
and localization for class-aware object detection. These are
widely used in many two-stage objects detectors e.g. RCNN
variants [22, 35, 51]. Jaiswal et al. proposed an adversarial
framework [26] for class-agnostic object detection which
replaces object type classification head with a binary classi-
fier for class-agnostic detection. Another recent work pro-
poses an Object Localization Network (OLN) [30] that re-
places the classifier head in Faster-RCNN [51] with local-
ization quality estimators such as centerness and IoU score
for objectness estimation. Alternatively, Siméoni et al. pro-
posed a method [54] that extracts features from a DINO [7]
self supervised pre-trained transformer that uses patch cor-
relations in an image to propose object proposals.

Multi-modal Transformers: Multi-modal Vision Trans-
formers (MViT) typically involve learning task agnostic
vision-language (V+L) representations using millions of
image-text pairs and then transferring the knowledge to
downstream tasks [9, 28, 34]. Inspired from the success of
BERT [12] in natural language processing (NLP), Visual-
BERT [33], ViLBERT [41] and LXMERT [58] jointly learn
V+L representations using image-caption pairs. They uti-
lize a pretrained region proposal method [51] and learn the
V+L correlation using self-supervised tasks such as mask
language modeling and sentence image alignment. In a con-
current work, VL-BERT [56] performs pretraining on both
text-only and visual-linguistic datasets and achieve an im-
proved performance on multiple downstream visual com-
prehension tasks. UNITER [9] introduces Word-Region
Alignment (WRA) pretraining task using Optimal Trans-
port (OT) [45] which facilitates the alignment between text
and image regions. It only masks one modality at a time
while keeping the other modality intact which helps it to
better capture the V+L relationships. We refer the readers
to a recent survey [29] for a detailed treatment on ViTs.

All these methods utilize an off-the-shelf region proposal
method [51] which usually produces noisy regions. OS-
CAR [34] tries to mitigate this problem by using object
detector tags for modeling V+L understanding. It relies
on the fact that the salient objects in the image are easy
to detect and are typically mentioned in the caption. Al-
ternatively, MDETR [28] leverages explicit alignment be-
tween text and ground-truth bounding boxes to learn visual-
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language alignment. It builds on-top-of recently proposed
DETR [5] model, generalizes to unseen concepts and out-
performs the previous methods on many V+L downstream
tasks. Going further, 12-in-1 [42] utilizes the pretrained
V+L representations and performs a joint training of a sin-
gle model on 12 datasets. This learning paradigm improves
the single task performance as compared to the traditional
task-wise training by achieving superior results on 11 out
of 12 tasks. Gupta et al. proposed GPV-I [20], a unified
architecture for multi-task learning, where the task is in-
ferred from the text prompt. It takes an image and a task
description as input and outputs text with the correspond-
ing bounding boxes. It is also based on DETR [5] and uses
aligned text-image pairs during its training, similar to [28].
We observe that these [20, 28] multi-modal transformers,
which are trained using aligned image-text pairs, produce
high quality object proposals by using simple text queries
e.g., ‘all objects’.
Unsupervised Approaches: Recently, many unsupervised
pretraining methods are proposed for the object detection
task. Xiao et al. introduced ReSim [68] to encode both
the region and global representations during self-supervised
pretraining. In addition to the standard contrastive learning
objective [8, 21], it slides a window in the overlapping re-
gion of the different views of an image and maximizes the
feature similarity of the corresponding features across all
convolutional layers. DetCo [69] approaches this problem
by generating both the global views and local patches from
an image and defines hierarchical global-to-global, local-to-
local and global-to-local contrastive objectives. UP-DETR
[11] proposes ‘random query patch detection’ pretext
task for pretraining of DETR [5]. The random patches from
the image are generated and the model is trained on a large-
scale dataset to locate these patches. DETReg [3] argues
that it is necessary to pre-train both the backbone and the
detection network for learning good representations for ob-
ject detection downstream tasks. It utilizes an off-the-shelf
selective search [60] proposal generation algorithm for ac-
quiring pseudo labels for localization and pretrained con-
trastive clustering based SwAV [6] model for separating
categories in the feature space. All these methods can be
used for generating class-agnostic object proposals after the
unsupervised pretraining. However, as shown in our analy-
sis, the unsupervised approaches do not perform as well as
the proposed class-agnostic OD framework based on super-
vised MViTs.
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