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A B S T R A C T   

The digital transformation in healthcare, propelled by the integration of deep learning models and the Internet of 
Things (IoT), is creating unprecedented opportunities for improving patient care. However, the utilization of low- 
resolution images, often generated by IoT devices, introduces biases in the deep learning models, thereby 
affecting the overall clinical decision-making process. While super-resolution techniques have been extensively 
employed to transform low-resolution images into high-resolution counterparts, the challenge of achieving 
highly accurate image restoration remains unresolved. This is especially critical in the medical imaging domain, 
where even minor inaccuracies can lead to significant biases in model training and, consequently, impact clinical 
outcomes. Although existing surveys have explored various super-resolution methods and their applications 
across different fields, a comprehensive review emphasizing the accuracy of image restoration in medical im
aging and its subsequent influence on deep learning models is notably lacking. This survey seeks to bridge this 
gap by offering a systematic review of current state-of-the-art models, highlighting the limitations of existing 
surveys, and underscoring open questions that merit further research. Specifically, we delve into the intricacies of 
medical image restoration, identify research gaps and unmet challenges in achieving optimal restoration of 
medical images, and emphasize the crucial role of developing more precise and resilient super-resolution 
methods to enhance the quality of medical images and, consequently, the performance of deep learning 
models in healthcare applications. Ultimately, this survey fosters a deeper comprehension of the prevailing 
challenges and unresolved questions in the field, thus setting the stage for future research efforts focused on 
refining medical image restoration and, subsequently, boosting the efficacy of deep learning models in 
healthcare.   

1. Introduction 

Our Introduction section consists from main topics as: 
Super-resolution: An Overview 
Definition: Super-resolution is a process of enhancing the spatial 

resolution of an image. 
Significance in Medical Imaging: The importance of high-quality 

visualization in MRI, CT scans, and the inherent limitations of imaging 

modalities. 
Traditional vs. Advanced SR Methods 
Interpolation Methods: Traditional methods of enlarging image size 

and their limitations. 
Emergence of Super-Resolution Techniques: How these techniques 

differ from interpolation and their reliance on discerning patterns in 
low-resolution images. 

Deep Learning and Super-resolution 

List of Abbreviations: Super Resolution, SR; Convolution Neural Networks, CNN; Magnetic resonance imaging, MRI; Computed tomography, CT; Positron emission 
tomography, PET; Compound annual growth rate, CAGR; Vision Transformers, ViT; Generative Adversarial Networks, GAN; High-resolution images, HRI; Low- 
resolution images, LRI; Super-Resolution Convolutional Neural Networks, SRCNN; Deep Residual Network, DRN; Recurrent Neural Network, RNN; Peak signal-to- 
noise ratio, PSNR; Structural similarity metric, SSIM; Discrete wavelet transforms, DWT; Multi-contrast Super Resolution, MCSR; Optical coherence tomography, 
OCT; Mean squared error, MSE; Information entropy, IE; Normalized Root Mean Square Error, NRMSE; Quality Factor, QF; Feature Similarity, FSIM; Universal 
Quality Index, UQI; Mutual Information, MI; Mean Absolute Error, MAE; Root Mean Square Error, RMSE; Mean Structural Similarity Index, MSSIM; Peak Absolute 
Error, PAE; Normalized Cross-Correlation, NCC; Ultrasonography, US. 
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Deep Neural Networks in SR: How deep learning has influenced the 
super-resolution domain and the advantages it offers. 

Mechanics of Deep Learning-based SR: The two primary stages - feature 
extraction and reconstruction. 

Implications in Smart Healthcare 
Benefits of High-resolution Medical Imaging: The advantages of 

enhanced imagery for radiologists, clinicians, and researchers. 
Holistic Aim of Super-resolution: It bolsters diagnostic precision and 

enlightens healthcare decisions. 
Scope of the Survey 
A brief overview of what the survey paper will cover: advancements, 

challenges, applications, and future directions of medical image super- 
resolution. 

Categories of SR Methodologies 
An introduction to the broad categories of super-resolution tech

niques, including Spatial, Transform, Hybrid, Traditional Machine 
Learning, and Deep Learning approaches. 

Super-resolution refers to the process of enhancing the spatial reso
lution of an image, leading to a higher-quality and more detailed rep
resentation. In the realm of medical imaging, such as Magnetic 
Resonance Imaging (MRI) or Computed Tomography (CT) scans, super- 
resolution becomes especially pertinent given the necessity for precise 
visualization of anatomical structures and disease-associated features. 
Medical images obtained via various imaging modalities often grapple 
with inherent limitations, including noise, restricted sensor resolution, 
and hardware constraints. These factors may produce images with 
reduced spatial resolution, complicating the task of discerning minute 
details essential for precise diagnosis and treatment planning. Tradi
tional methods for enlarging image size, like interpolation, involve 
estimating pixel values from their neighbors. Interpolation methods, 
while straightforward, fail to restore the high-frequency information 
that is vital in medical images. Super-resolution techniques, contrast
ingly, utilize advanced algorithms to retrieve finer details and enhance 
image quality beyond what interpolation can offer. These techniques 
capitalize on the idea that certain patterns and structures within low- 
resolution images hint at the high-frequency information found in the 
original high-resolution counterpart. By discerning and modeling these 
patterns, super-resolution algorithms strive to predict and amplify ab
sent high-frequency components, yielding a crisper, more detailed 
image. The advent of deep learning has markedly influenced the super- 
resolution domain. Deep neural networks, given their ability to learn 
intricate mappings between low-resolution and high-resolution image 
pairs from vast datasets, are adept at discerning the relationships be
tween low and high-frequency components. This proficiency empowers 
them to produce superior-quality super-resolved images from low- 
resolution sources. Deep learning-based super-resolution typically en
compasses two primary stages: feature extraction and reconstruction. 
The former extracts pertinent features and patterns from the low- 
resolution input, while the latter stage crafts a high-resolution image 
using those extracted features. The implications of super-resolution are 
profound, especially in the realm of smart healthcare. High-resolution 
medical images furnish more precise information for diagnosis, treat
ment planning, and surgical procedures. Enhanced imagery can assist 
radiologists, clinicians, and researchers in pinpointing subtle abnor
malities that might remain unnoticed in low-resolution images. At its 
core, super-resolution revolves around the use of sophisticated algo
rithms, including deep learning methods, to amplify the resolution of 
medical images. By reclaiming high-frequency details, super-resolution 
methods bolster diagnostic precision and foster more enlightened 
healthcare decisions. 

This serves as a foundation for our survey paper, which will probe 
recent advancements, obstacles, applications, and prospective trajec
tories of medical image super-resolution within the context of smart 
healthcare. 

In the expansive landscape of SR methodologies, techniques can be 
categorically divided into Spatial, Transform, Hybrid, Traditional 

Machine Learning, and Deep Learning approaches. 

1.1. Spatial approaches 

Super-resolution pertains to the enhancement of an image’s spatial 
resolution, yielding a high-quality and intricate representation. This is 
paramount in medical imaging, where precise depiction of anatomical 
structures and disease-associated features is essential. Medical images 
might sometimes exhibit reduced spatial resolution due to constraints 
such as noise, sensor limitations, or hardware complications. Conven
tional methods, such as interpolation—which derives pixel values from 
adjacent pixels—are rudimentary spatial approaches. The study [1] 
presents a method to augment the resolution of medical images by 
leveraging these patterns. Initially, a high-resolution version of the 
image is constructed using nonlocal interpolation, which draws upon the 
recurrent patterns inherent in medical images. Subsequently, a tech
nique pinpointing patterns with the least variance is employed to 
reconstruct this high-resolution image. The process is fine-tuned by 
continually ensuring that the image aligns with its low-resolution 
counterpart and by reapplying the pattern-detection method. Howev
er, maintaining alignment with the low-resolution version may occa
sionally introduce artifacts or diminish potential enhancements. [2] 
proposed to tackle the super-resolution challenges in medical imaging, 
especially when the degradation kernel is ambiguous or generic based 
on bilinear interpolation. Med-BSR refines the degradation factors, 
including blur, noise, and down sampling, making them more reflective 
of real-world scenarios. A distinctive approach that randomizes the 
sequence and combination of these degradation factors expands the 
model’s degradation space. [3] method addresses challenges in 
multi-modal medical image fusion, focusing on balancing computational 
efficiency and fusion quality while emphasizing high-resolution imaging 
in clinical settings. The method employs a two-scale decomposition, 
breaking down the super-resolution image into a base layer and a detail 
layer. The detail layer undergoes enhancement and information refine
ment to magnify details and uphold vital features. Meanwhile, the base 
layer utilizes a Weighted Local Energy Deviation (WLED) rule to main
tain the energy information from the original images. Notably, bicubic 
interpolation-based super-resolution is introduced to MMIF for the first 
time, enhancing the image’s resolution. However, these methods cannot 
recover the high-frequency information crucial in medical images. 

1.2. Transform approaches 

In the realm of super-resolution, transform techniques emphasize 
converting the image from its spatial domain to another using mathe
matical procedures, such as Fourier, edge-based methods, local self – 
similarity, special filters (such as Lanczos) or Wavelet transforms [4,5]. 
The mention of interpolation techniques like nearest-neighbors inter
polation and bicubic interpolation also falls within this category as they 
involve transforming pixel values. [6] delves into the utilization of 
various medical imaging techniques, like CT, MRI, and ultrasonography, 
which aid in visualizing internal bodily structures for clinical uses. 
Focusing on interpolation—a technique to produce new data points from 
known ones, especially during image transformations—the study in
troduces and assesses a resampling method using the three-dimensional 
Lanczos kernel. The method might be optimized for certain resolutions 
or dimensions and might not scale well for very high or very low reso
lutions. [7] introduced utilizing a unique generic image called the 
gradient profile prior. This prior is a parametric descriptor that outlines 
the shape and sharpness of image gradients. By learning from a vast 
collection of natural images, this gradient profile prior offers a 
constraint on image gradients during the transition from a 
low-resolution to a high-resolution image. The gradient profile prior is 
learned from a large number of natural images. This might limit the 
method’s effectiveness on images that deviate significantly from the 
training set, such as medical or astronomical images. [8] the method 
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leverages the BM3D [9] paradigm, capitalizing on the principles of 
sparsity and the self-similarity of nonlocal patches. Originating from a 
variational problem framework, the algorithm follows a structure 
commonly found in iterative back-projection super-resolution tech
niques, where a high-resolution image is continuously updated based on 
prior estimations and associated low-resolution error. Iterative 
back-projection techniques, especially those utilizing BM3D and sparse 
coding, can be computationally intensive. This might make the method 
less suitable for real-time applications or processing a large batch of 
images. 

1.3. Hybrid approaches 

Hybrid methods in super-resolution are an amalgamation of spatial 
and transform techniques, leveraging the advantages of both domains. 
The mention in the content about combining deep learning with tradi
tional super-resolution can be viewed as a hybrid technique. This 
technique aims to bring together the direct pixel manipulation of spatial 
methods and the domain transformation of transform techniques for 
more robust results. [10] introduces a method for single-image SR that 
relies on self-similarity instead of external data. Traditional SISR 
methods focus on patch-based techniques, either drawing from large 
datasets or leveraging similarities within the input image itself. This 
research innovatively uses vast groups of similar patches from the input 
image for SISR. It integrates a fresh prior which leads to collaborative 
filtering of patch groups in a 1D similarity domain, all within an iterative 
back-projection structure. The use of iterative back-projection can in
crease computational costs, especially for larger images. This might 
affect the real-time applicability of the method. 

1.4. Traditional machine learning approaches 

Traditional machine learning (ML) approaches for super-resolution 
(SR) in medical imaging primarily revolve around extracting features 
and learning mappings from low-resolution (LR) to high-resolution (HR) 
images, while often leveraging the self-similarity inherent in images. 
Sparse coding is one such method grounded on the principle that images 
can be represented as a sparse linear combination of basic elements from 
a dictionary [11]. For SR, separate dictionaries are constructed for both 
low and high-resolution patches. The representation of a low-resolution 
patch using the LR dictionary facilitates the reconstruction of its corre
sponding HR version using the HR dictionary [12]. Another interesting 
approach is self-exemplar, which utilizes the inherent self-similarities in 
medical images. The idea is that patches from the same image at 
different scales can have resemblances [13]. Hence, the low-resolution 
image itself can serve as a source to find patches similar to the target 
patch, which are then used for super-resolution. Random forests have 
also been employed in this domain. They can be trained to predict HR 
patches directly from LR ones using features that might encompass pixel 
values, gradients, or textures. The prediction can either be of the HR 
patch itself or the difference between the LR and HR patches [14]. 

Manifold learning [15] is a more theoretical approach, operating 
under the assumption that LR and HR image patches occupy analogous 
manifolds in their respective spaces. Techniques such as Locally Linear 
Embedding (LLE) or Isomap can be used to map LR patches to HR 
patches based on the learned manifold structures. The K-Nearest 
Neighbors (K-NN) [16] algorithm has been adapted for SR. For each LR 
patch, its k-nearest neighbors are identified in a database of LR patches, 
and the corresponding HR patches from this database are utilized to 
reconstruct the target HR patch. 

1.5. Deep learning approaches 

The last decade has witnessed a surge in the application of deep 
learning for super-resolution. Deep neural networks can be trained to 
understand relationships between low and high-resolution images, 

enabling the creation of sharper images from low-resolution inputs. 
Feature extraction and reconstruction are the primary steps in this 
domain. Feature extraction pertains to capturing essential patterns from 
the low-resolution image, while reconstruction focuses on generating a 
high-resolution output using these features. The content provides mul
tiple instances of deep learning applications, such as SRGAN, SRCNN, 
and other deep learning-based image processing techniques receiving 
significant attention. Deep learning’s potential to enhance diagnostic 
accuracy in medical imaging, its role in segmentation, denoising, and 
medical diagnosis, and its challenges are also highlighted. 

In recent years, the research community has exhibited significant 
interest in digital healthcare, as documented by [17] and [18]. Digital 
healthcare applications often involve processing images of affected 
human body parts, such as brain tumors or lung cancer, as highlighted 
by [19]. A notable challenge is that many medical images, for instance, 
MRI depictions of the brain, typically have low resolution. One intuitive 
solution to this resolution challenge would be to enhance the resolution 
of the imaging devices themselves. Nevertheless, in the context of 
super-resolution, the focus is often on restoring high-frequency details 
from the existing low-resolution images. The most straightforward 
approach to boosting image resolution hinges on interpolation tech
niques, examples of which include nearest-neighbor interpolation, as 
discussed by [20], and bicubic interpolation, as referenced by [21]. 
While interpolation methods can increase an image’s size, they are not 
primarily designed to enhance image information. Consequently, they 
struggle to recover the high-frequency details inherent in the image. 
Over recent years, deep learning-based super-resolution has seen 
remarkable advancements. Current trends show that deep 
learning-oriented image processing techniques are garnering significant 
attention. Given the pivotal role of medical imaging in diagnosing spe
cific ailments, elevating the resolution of these images stands to mark
edly improve diagnostic precision and guide effective treatments. 
Moreover, tasks like automatic recognition and image segmentation can 
benefit immensely from heightened resolution. However, achieving the 
desired resolution remains challenging due to constraints related to the 
imaging environment, system limitations, and inherent issues like noise 
and blur. While there have been substantial advancements in acquisition 
technology and the efficacy of optimized reconstruction algorithms over 
recent decades, super-resolution (SR) techniques offer a solution to 
address image processing challenges. Various deep learning (DL) 
methodologies tailored to rectify SR issues in medical images have 
emerged. Notably, remarkable strides have been achieved in domains 
like image segmentation as observed by [22], super-resolution [23], 
medical diagnosis following [24], and denoising as illustrated by [25]. 
This article endeavors to deliver a comprehensive review of the latest 
trends in deep learning-driven medical image super-resolution. Pre
dominant research on the SR process can be categorized into two prin
cipal phases: feature extraction and reconstruction. Moreover, this 
review touches on other pivotal themes, including single-contrast SR, 
multi-contrast SR, the role of super-resolution in healthcare, recent 
breakthroughs, SR challenges, and metrics for performance evaluation. 
In conclusion, we highlight several prospective avenues and lingering 
challenges warranting the community’s attention moving forward. 

1.6. A brief introduction of medical imaging 

In recent years, advances in medical imaging have revolutionized 
both the healthcare and computer vision sectors. Enhanced diagnostic 
imaging now offers doctors an unparalleled view of the human body, 
facilitating precise diagnoses and enabling them to select optimal 
treatment protocols. These insights are powered by high-definition im
ages capturing both hard and soft tissue structures. Contemporary 
medical facilities are equipped with a suite of state-of-the-art imaging 
tools, ranging from MRI and CT to positron emission tomography (PET) 
and nuclear medicine modalities. 

The X-ray, one of the pioneering techniques in medical diagnostic 
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imaging, remains invaluable in diagnosing diseases affecting rigid tis
sues. As delineated by [26], X-rays are instrumental in identifying 
skeletal system disorders, such as fractured bones. They are also adept at 
detecting diseases exclusive to the skeletal system, alongside others like 
pneumonia, as highlighted by [27], and conditions like pleurisy. 

MRI, which harnesses magnetic fields and radio waves, is optimized 
for imaging the body’s soft tissues. It is a go-to modality for identifying 
conditions affecting internal organs as mentioned by [28], and is adept 
at spotting muscle ruptures and ligament strains. MRIs are also pivotal in 
detecting cancers, as referenced by [29], and in diagnosing spinal cord 
injuries. 

CT scans, a sophisticated extension of the X-ray technique, offer 
cross-sectional, three-dimensional visualizations of the body, aiding in 
the detection of anomalies across both hard and soft tissues. Using finely 
focused beams and capturing images from diverse angles, CT delivers 
intricate visuals that can be analyzed in various dimensions. Its capa
bilities extend to diagnosing internal injuries, as pointed out by [30], 
and pinpointing ailments like cancer and cardiac disorders, as refer
enced by [31] and [32] respectively. 

PET is a diagnostic imaging technique that employs radioactive 
tracers to produce intricate images of the body’s internal structures. 
When introduced into the body, these tracers, or dyes, illuminate the 
functionality of organs and other body systems as captured by a PET 
scanner. The modality offers insights into tissue health, blood oxygen 
levels, and the body’s sugar metabolism patterns. As a result, PET scans 
play a pivotal role in diagnosing a range of conditions including cancer, 
as highlighted by [33], heart ailments as pointed out by [34], and 
various neurological disorders. 

In scenarios where exposure to ionizing radiation from techniques 
like CT or PET is deemed risky or unnecessary, or when the expenses 
associated with MRI are hard to justify, ultrasound (or sonography) 
emerges as an effective alternative. Utilizing sound waves to produce 
images, ultrasound is a non-invasive and cost-effective method. While 
it’s most renowned for its use during pregnancy, its applications are 
vast. As noted by [35], ultrasound imaging is versatile and can be 
employed for diverse medical procedures, including guiding needle 
biopsies. 

1.7. Market statistics and research trends 

According to Fortune Business Insights, the market share of medical 
imaging will grow at a compound annual growth rate (CAGR) of 5.8% 
and will reach 56.53 billion USD by 2028 compared to a market share of 
37.97 Billion USD in 2021 med [36]. Medical equipment companies are 
trying to develop low-cost and good-performing medical imaging de
vices due to the rising prevalence of various diseases (e.g., cancers, 
chronic and neurological diseases) across the whole world. More spe
cifically, 3D medical imaging devices will play a key role in an increase 
in the medical imaging market. Among various regions of the world, 
during the forecast period of 2021–2028, the Asia Pacific region is ex
pected to observe a higher CAGR. Latin America has expected a rela
tively low growth. On the other hand, a significant increase in the 
number of publications in the fields of healthcare and super-resolution. 
Therefore, one can say that super-resolution and digital healthcare can 
be promising research areas for future work. 

1.8. Existing surveys and tutorials 

Medical imaging, owing to its critical importance in diagnostics and 
treatment planning, has been a prolific field for research and innovation. 
Over the years, many surveys and tutorials have been published, shed
ding light on different aspects of this domain. This section delves into the 
existing literature, emphasizing the areas they covered, the gaps they 
left, and how our survey fills these gaps. 

Various works, such as [37,38], and [39] have surveyed different 
aspects of healthcare. [37], examined healthcare optimization, 

discussing recent advancements and identifying open challenges. [38] 
focused on children’s perceptions of healthcare. In their study, they 
analyzed and compared the children’s responses. In a different 
approach, [39] explored the role of the IoT in enhancing healthcare. 
Specifically, the authors discussed the various healthcare applications 
enabled by IoT and open challenges. Conversely, the research by [40] 
provided an overview of super-resolution and video reconstruction 
methodologies, while also hinting at potential future directions in the 
field. [41] in their study, offered a comprehensive review of 
super-resolution techniques. They delved deep into the nuances of 
super-resolution, discussing the evaluation of algorithms, the incorpo
ration of color data, the optimization of cost functions, and the in
tricacies of imaging models and registration algorithms. [42] focused on 
surveying super-resolution methods, specifically emphasizing the com
parison of various super-resolution techniques found in existing litera
ture. [43] offers a thorough review of the latest developments in 
applying deep learning techniques to medical image super-resolution. 
The overview also touches upon the challenges and potential trajec
tories of future research in this domain. However, the review falls short 
in its evaluation of the studies it incorporates. Specifically, there is an 
absence of an in-depth assessment of study quality, which could raise 
questions about the reliability of the review’s conclusions. While the 
authors do make a passing reference to the metrics used in the analyzed 
studies, a critical appraisal of the methodologies and the limitations of 
these studies is notably missing. [44] present a detailed review of the 
latest advancements in using GANs for medical image fusion, encom
passing challenges and prospective research directions. The paper un
derscores the potential of GAN-centric methods in enhancing the quality 
and precision of medical image fusion, which can subsequently facilitate 
better diagnosis and treatment of various health conditions. While the 
paper thoroughly discusses recent research concerning GAN-based 
medical image fusion, it omits the exploration of other fusion method
ologies or techniques. Consequently, the conclusions drawn might not 
be transferable to different fusion techniques or settings. [45] delve into 
the potential future trajectories and research avenues within the swiftly 
progressing domain of transformer models in medical imaging. They 
tackle both challenges and prospects, aiming to harness these models to 
transform medical imaging and elevate patient care. Yet, forecasting 
research trajectories and hurdles is inherently conjectural, so the actual 
progress in the field may diverge from the authors’ projections. [46] 
examine the seminal innovations, methods, and performance enhance
ments offered by Vision Transformers (ViT) across diverse medical im
aging tasks, including segmentation, classification, and detection. The 
paper underscores the potential challenges and prospective de
velopments in this emerging arena, spotlighting the importance of 
ViT-oriented models for bolstering diagnostic precision and aiding 
clinical judgments. However, the paper’s primary focus is on the accu
racy and efficiency of ViT models, which somewhat overshadows pivotal 
concerns like model interpretability, resilience, and broad applicability. 
Contrary to existing surveys and tutorials such as [37–41], and [42], our 
study specifically focuses on super-resolution for medical imaging. A 
comparative analysis is provided in Table 1. 

In the realm of digital healthcare, while super-resolution techniques 
promise significant enhancements to medical imaging, they are not 
devoid of challenges and limitations. One of the primary challenges 
faced by these techniques pertains to data variability. Medical imaging 
data can exhibit vast heterogeneity due to differing modalities, such as 
MRI, CT, and X-ray, and the specific machine configurations employed 
across various healthcare settings. Noise amplification, another inherent 
issue, poses significant challenges. As super-resolution seeks to refine 
image details, it may inadvertently intensify the noise present in low- 
resolution images. Such noise amplification could risk obscuring vital 
diagnostic information, which is critical for accurate medical decision- 
making. Furthermore, while super-resolution techniques aim to pre
dict or enhance finer image details, there’s an ever-present risk of loss of 
these details, which are of paramount importance in diagnosis. 
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Computational demands also present a limitation. High-resolution 
reconstructions, particularly in 3D imaging modalities, necessitate 
robust computational resources. This computational overhead can pose 
barriers in scenarios demanding real-time analysis or in clinical settings 
with limited computational capacities. Training data limitations further 
compound the challenge. The efficacy of super-resolution techniques 
often hinges on the availability of extensive and high-quality training 
datasets. Acquiring a diverse and representative set of medical images 
for training purposes remains a perennial challenge due to ethical con
cerns and data privacy regulations. Even when models are adequately 
trained, concerns about their generalizability arise, given that a model’s 
performance on one set of medical images might not necessarily 
extrapolate to images sourced from different devices or demographics. 

Moreover, the introduction of imaging artifacts by some super- 
resolution methods could potentially mislead clinicians. These artifi
cially introduced details might deviate from the true anatomical repre
sentation, raising ethical and clinical concerns. While the promise of 
super-resolution techniques in the domain of medical imaging is unde
niable, a judicious acknowledgement of their challenges and limitations 
is crucial for their optimized and safe application. 

In recent advancements of super-resolution methods in medical im
aging, several challenges and limitations have been observed. One of the 
most prominent concerns is the increased computational requirements 
stemming from the use of multi-head convolutional attention mecha
nisms with varying kernel sizes [43]. Such computational demands 
make these methods less apt for real-time applications, particularly on 
hardware with constrained resources. When delving into the specifics of 
super-resolution US, another limitation emerges [55]. Due to the utili
zation of higher frequencies for enhanced resolution, there’s a 
compromise on penetration depth. This can limit the technique’s effi
cacy in imaging deeper or larger breast tissues, potentially hindering its 
broader applicability. Furthermore, while these methods aspire to refine 
and highlight essential features in the super-resolved images, they oc
casionally might exaggerate artifacts and noise from the original 
low-resolution images. This amplification can compromise diagnostic 
accuracy, leading to potential misinterpretations. Implementation poses 
another set of challenges. Integrating the proposed super-resolution 
techniques into current clinical workflows and imaging systems often 
necessitates supplementary development and validation efforts. This can 
hamper the swift adoption of these techniques in practical medical 
scenarios [56]. When examining the architecture of these 
super-resolution models, they often demand significant computational 
power and memory, not just for training but also during inference. This 
resource intensity might curtail their use in settings with limited 
computational facilities or in situations that require immediate results. 
Additionally, the fusion of multiple residual networks in certain models 
can further exacerbate computational complexity and memory de
mands, complicating real-time implementations or deployments on de
vices with limited capabilities [57]. The introduction of multi-attention 
networks paired with wavelet transforms, although innovative, can 
obscure the interpretability of the model’s internal dynamics. This 
opacity can hinder the diagnosis and rectification of potential model 
anomalies. Moreover, the application of GANs in medical image 
super-resolution isn’t free from challenges. Bias in the generated images 
poses a significant threat, which could mislead clinical decisions [58]. 
Coupled with GANs’ renowned demand for extensive computational 
resources, their broad use can be restrictive in several medical contexts. 
Lastly, many of these advanced methods rely heavily on the availability 
of paired low- and high-resolution images during training. Obtaining 
such paired datasets can be challenging in specific medical imaging 
scenarios, posing a bottleneck for the wider adoption of these 
techniques. 

Advancements in super-resolution methods for medical imaging 
offer promising enhancements, but they come with a suite of challenges 
and limitations that need to be judiciously addressed for broader clinical 
adoption. While the aforementioned surveys and tutorials provide Ta
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valuable insights into SR and its applications, there exist noticeable 
gaps. Few comprehensive studies intertwine the nuances of SR in med
ical imaging with the latest deep learning approaches or discuss the 
integration of IoT in healthcare applications of SR. Furthermore, many 
surveys lack a systematic investigation of the challenges unique to 
healthcare applications. In light of this backdrop, our survey seeks to fill 
these gaps, offering a meticulous exploration of the super-resolution 
realm, particularly focusing on its applications and challenges in 
healthcare. By synthesizing information from various sources and 
introducing fresh perspectives, we aim to provide readers with an 
updated and holistic understanding of the field. 

1.9. Our contributions 

Our survey, outlined in Fig. 1, delves into the role of super-resolution 
and the IoT in medical imaging, aiming to bolster the effective diagnosis 
of a myriad of diseases. Our key contributions are as follows: 

• First, we present an overview of super-resolution from the perspec
tive of medical imaging. Moreover, we clearly discuss in detail the 
various steps of super-resolution.  

• Second, we present the recent advances in super-resolution for 
medical imaging. Additionally, we rigorously evaluate these recent 
advances.  

• Finally, we found and present various open challenges of enabling 
super-resolution for medical imaging. 

We undertake a comprehensive examination of diverse methodolo
gies pertinent to super-resolution, spanning from foundational tech
niques to avant-garde innovations. The proposed survey emphasizes the 
tangible real-world applications of super-resolution based on deep 
learning models such as SRCNN, DRN, GAN, attention-based models, 
and RNN, ensuring that the theoretical discussions are anchored in 
clinical relevance. Beyond presenting recent developments, our narra
tive adopts a critical evaluative stance. This ensures a deeper under
standing of the underpinnings, rationale, and implications of each 
technique. 

Acknowledging the dynamic landscape of technology, our survey is 
anticipatory, contemplating the likely evolution and potential directions 
of super-resolution in upcoming years. 

By maintaining fidelity to these objectives and ensuring a clear, well- 
articulated scope, we aspire to furnish a survey that stands as an 
invaluable resource for scholars, practitioners, and stakeholders in 
medical imaging. 

1.10. Survey systematic investigation 

Survey methodology 
The main objective of this survey is to provide a comprehensive 

overview of the current state-of-the-art deep learning-based models for 
medical image super-resolution. This is a descriptive cross-sectional 
survey designed to provide a snapshot of the current state of deep 
learning-based models for medical image super-resolution. The popu
lation of this survey includes all published research articles on deep 
learning-based models for medical image super-resolution. A sample of 
more than 100 articles published between 2010 and 2023 was selected 
using a systematic random sampling method. Data were collected 
through a systematic review of the literature. Articles were identified 
using a combination of keyword searches and reference list reviews. 
Data were analyzed using a combination of descriptive statistics and 
thematic analysis. Descriptive statistics were used to summarize the 
characteristics of the included studies, and thematic analysis was used to 
identify common themes and patterns in the findings. 

Methodology for literature review on deep learning-based models for medical 
image super-resolution 

The methodology of this literature review is designed to systemati
cally identify, evaluate, and integrate the findings of relevant studies on 
deep learning-based models for medical image super-resolution. A 
combination of keywords was used to extract relevant articles. These 
included terms like "deep learning", "medical image", "super-resolution", 
"CNN", "GAN", and "MRI". We also performed searches using combined 
keywords to increase the breadth of our results. To supplement our 
primary search, we manually examined the reference lists of selected 
articles, aiming to identify any relevant studies that might have been 
overlooked in the primary search. To be eligible for inclusion in our 
review, articles needed to focus specifically on deep learning-based 
models tailored for medical image super-resolution. We ensured the 
selected articles were written in English and constituted full-text 
research articles. Preliminary communications, letters to the editor, 

Fig. 1. Proposed Survey Presented state-art medical image super-resolution models and methods.  
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and review articles were excluded. Additionally, the articles had to 
present either a novel deep-learning architecture or provide a compre
hensive evaluation of existing architectures in the context of medical 
imaging. Furthermore, we prioritized articles published in peer- 
reviewed journals or conference proceedings. 

On the other hand, studies that did not focus on medical image super- 
resolution or did not employ deep learning as the primary methodology 
were excluded. We also excluded duplicate studies, especially those that 
used the same dataset without introducing a significant variation in 
methodology. Studies that lacked clarity or did not provide adequate 
details on their experimental setup were disregarded. In instances where 
the full-text version of the article was not accessible, we opted to exclude 
the article from our review. During the data extraction phase, titles and 
abstracts of the identified articles were initially screened to gage their 
relevance. Those that failed to meet the basic inclusion criteria were 
immediately discarded. The shortlisted articles from this initial 
screening then underwent a comprehensive full-text review. In case of 
discrepancies regarding their inclusion, we arrived at a resolution 
through consensus or by consulting a third reviewer when necessary. For 
every article included in our review, pertinent data points were noted, 
such as the study’s objectives, the deep learning model employed, 
dataset details, evaluation metrics, and principal findings. Following the 
extraction, a thematic analysis was undertaken to discern recurrent 
themes, trends, and patterns in the findings. This allowed us to catego
rize the articles based on their primary focus, methodology, and 
contributions. 

Our methodological approach was rigorous and structured, aiming to 
provide readers with an exhaustive and insightful understanding of the 
current state of deep learning models applied to medical image super- 
resolution. 

Research questions 
The main objective of this survey is to provide a comprehensive 

overview of the current state-of-the-art deep learning-based models for 
medical image super-resolution. The research questions guiding this 
survey are: 

What is the existing deep learning-based models for medical image 
super-resolution? 

What are the strengths and limitations of each model? 
What are the future directions for research in this area? 

Search strategy 
A systematic search of the literature was conducted using the 

following electronic databases: PubMed, IEEE Xplore, and Google 
Scholar. The search terms used were: "medical image", "super-resolu
tion", "deep learning", "SRCNN", "DRN", "GAN", "attention-based 
models", and "RNN". The search was limited to articles published in 
English between January 2010 and May 2023. 

Inclusion and Exclusion Criteria Studies were included if they were 
original research articles that used deep learning-based models for 
medical image super-resolution. Studies were excluded if they did not 
use deep learning-based models, did not focus on medical images, or 
were review articles, editorials, or conference abstracts. 

Data extraction 
Data were extracted from each included study on the following 

variables: authors, year of publication, study design, type of medical 
images used, deep learning model used, performance metrics, and key 
findings. 

Quality and Risk of Bias Assessment. The quality and risk of bias of 
the included studies were assessed using the Quality Assessment of 
Diagnostic Accuracy Studies (QUADAS-2) tool. 

Data synthesis 
A narrative synthesis of the findings from the included studies was 

conducted, organized by the type of deep learning model used. 

1.11. Survey organization 

The rest of this survey is organized as follows: Section 2 provides a 
comprehensive foundation of SR followed by SR applications in different 
domains. Section 5 elucidates recent advances of SR particularly in 
healthcare applications and covers its applications in different diseases 
on numerous state-of-the-art public datasets. Section 6 identifies chal
lenges and unaddressed issues of SR in relation to the healthcare domain 
and Section 7 presents experimental results of several state art models 
based on medical image super resolution, Section from 8 till 12 con
cludes this survey including discussion, recommendation parts. 

2. Foundations and applications 

This section highlights topics such as: 
Definition and Objective: Briefly define SR and its primary goal of 

transforming low-resolution images (LRI) into high-resolution images 
(HRI). 

Techniques and Importance: Discussion on the methodologies, espe
cially deep learning, used for SR and its significance in computer vision. 

Diverse Applications: Highlighting the various fields where SR is 
applied, referencing Fig. 1. 

Super-resolution in medical image processing 
Role in Medical Imaging: Elucidating the importance of SR in 

enhancing diagnostic accuracy, treatment planning, and improving pa
tient outcomes. 

Challenges with Medical Imaging: Addressing the technical constraints 
of imaging modalities and the resulting loss of critical information. 

Advantages of SR in Medical Imaging: Discuss how SR techniques can 
overcome challenges and enhance the quality of medical images, along 
with its implications for patient care. 

SR involves the estimation of high-resolution images (HRI) from 
their low-resolution counterparts (LRI). The primary objective of super- 
resolution is to transform an LRI input into a detailed HRI output. 
Numerous methodologies, including deep learning techniques, have 
been devised to tackle this challenge. SR holds significant importance in 
the realm of computer vision and has found applications in diverse fields 
like surveillance, space imaging, and medical image processing. These 
real-world applications are depicted in Fig. 1. In the realm of medical 
image processing, super-resolution plays a pivotal role by enhancing 
diagnostic accuracy, refining treatment planning, and subsequently 
improving patient outcomes. Owing to technical constraints or concerns 
about patient safety, medical images like X-rays, CT scans, and MRIs are 
often acquired at a limited resolution. This can lead to a significant loss 
of critical information and diminished image quality. By leveraging 
advanced algorithms, super-resolution techniques have the potential to 
counteract these constraints, thereby amplifying the resolution of 
medical images [58]. The end result is a richer and more precise image. 

With such enhanced medical imagery, healthcare professionals are 
better equipped to pinpoint and diagnose conditions, for instance, tu
mours or anomalous growths, as highlighted by [59]. They can also 
obtain exact measurements of these anomalies, along with their precise 
locations. This invaluable information facilitates the formulation of 
more effective treatment strategies, be it radiation therapy or surgical 
procedures. Therefore, the value of super-resolution in medical image 
processing is underscored by its capacity to bolster the fidelity and 
precision of medical imagery, which, in turn, holds promise for elevating 
patient care and the efficacy of medical interventions. 

2.1. Medical image super resolution 

Medical imaging plays an indispensable role in diagnosing and 
treating a myriad of diseases. However, procuring high-resolution 
medical images can often be daunting due to challenges such as low 
resolution, noise, and inherent artifacts. Deep learning-based super- 
resolution models have surfaced as a compelling solution to these 
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challenges. In this paper, we undertake a comprehensive review of 
cutting-edge deep learning models tailored for medical image super- 
resolution. Our discussion encompasses a range of models, from 
Super-Resolution Convolutional Neural Networks (SRCNN), Deep Re
sidual Networks (DRN), and Generative Adversarial Network (GAN)- 
based models to attention-driven and Recurrent Neural Network (RNN)- 
based models. Alongside this, we underscore the advantages and 
shortcomings inherent to each model. The paper concludes with a 
forward-looking perspective, delineating potential avenues for future 
research in this dynamic field. 

We undertook an exhaustive review of literature centered on deep 
learning models tailored for medical image super-resolution. Our study 
was anchored on research that employed deep neural networks for the 
enhancement of medical imaging modalities, encompassing MRI, CT, X- 
rays, and ultrasound scans. In our exploration, we discerned several 
predominant deep learning models designed for medical image super- 
resolution, notably SRCNN, DRN, GAN-based models, attention-centric 
models, and RNN-based models. These advanced models have consis
tently outperformed conventional interpolation techniques in terms of 
results. Both SRCNN and DRN deploy convolutional neural networks 
and residual blocks for feature extraction and the generation of refined 
high-resolution images. GAN-based models leverage a dual-network 
setup, encompassing a generator and a discriminator, to yield superior 
image quality. Attention-driven models introduce an attention mecha
nism, which purposefully zooms into significant image regions, while 
RNN-based models adopt a recursive approach to progressively hone the 
output image. 

3. Methods and technologies 

This section highlights topics such as: 
Medical image super-resolution: deep learning solutions 
Challenges in Medical Imaging: Reiterating the need for high- 

resolution imaging in the medical domain and the prevalent issues. 
Deep Learning as a Panacea: Introducing deep learning models as 

solutions to the challenges in medical imaging. 
Scope of the Current Review: Briefly state the purpose and content of 

the paper. 
Deep learning models for SR: A detailed overview of the 

different models, including: 
SRCNN and DRN: Their use of convolutional neural networks and 

residual blocks. 
GAN-Based Models: Highlighting their dual-network setup. And Gan- 

based vision Transformers models. 
Attention-Driven Models: Introducing the attention mechanism’s role. 
RNN-Based Models: Discussing their recursive approach. 
Comparison with Traditional Techniques: How these models outper

form conventional interpolation techniques. 
Conclusion and Future Directions: Summarize the review’s insights and 

point to potential future avenues in the field. 
The demand for HR medical images is increasing exponentially, 

enabling precise clinical diagnoses and interventions. However, due to 
various constraints like radiation dose, patient comfort, and scanning 
time, obtaining HR images can be challenging. Super-resolution tech
niques have been developed to overcome these constraints and enhance 
the resolution of acquired LR images. This paragraph discusses the 
prominent methods and technologies used in the field of medical image 
super-resolution Figs. 2, 3. 

3.1. Convolution neural networks super resolution (SRCNN) 

Convolutional neural networks (CNNs) have made significant strides 
in SR tasks, notably in enhancing medical images. CNNs stand out as 
potent tools for SR, consistently outperforming traditional SR tech
niques. In this paper, we provide an in-depth exploration of the appli
cation of super-resolution convolutional neural networks (SRCNN) 
within the realm of medical imaging. We delve into the architecture of 
SRCNN, its diverse variants, and their influence on various medical 
imaging modalities, including MRI, CT, and ultrasound. Furthermore, 
we address the prevailing challenges and prospective avenues in 
SRCNN-based medical imaging research. 

[60] introduced a novel medical image super-resolution technique 
utilizing a feedback adaptive weighted dense network (FAWDN) to 
bolster performance. This approach is engineered to enhance the reso
lution of medical images, ensuring the preservation of diagnostic qual
ity—essential for precise medical diagnosis. The architecture of FAWDN 
is distinctive, integrating feedback loops and adaptive weighting 
mechanisms to meticulously capture and retain intricate details in the 

Fig. 2. Deep-learning network structures for single image super-resolution. (a) SRCNN, (b) attention-based network, (c) residual network (d) dense connection-based 
network, (e) GAN network. 
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images. During the patch extraction phase, the FAWDN systematically 
divides input images into smaller, overlapping segments. The innovative 
inclusion of the hidden section combined with the feedback net
work—subsequently forwarded to the input section—serves to elevate 
the low-level features directly, thereby enhancing feature selection. In 
their work, [61] put forth a method designed to amplify the resolution 
and quality of medical images, harnessing the power of fuzzy logic, hi
erarchical fusion, and attention mechanisms embedded within a CNN 
framework. These advanced integrations enable the model to more 
adeptly capture and represent high-level features and spatial details 
from the originating low-resolution medical images. The result? 
High-resolution images are reconstructed with enhanced precision and 
clarity, thereby empowering medical professionals with sharper tools for 
diagnosis and therapeutic strategizing. However, a potential caveat to 
consider is the augmented computational complexity introduced by the 
fusion of fuzzy logic, hierarchical fusion, and attention mechanisms into 
the CNN. This complexity might challenge the model’s real-time efficacy 
in on-the-ground clinical scenarios. [59] introduced the Pyramidal 
Feature Multidistillation Network (PFMDN), a sophisticated approach 
that capitalizes on the hierarchical feature structure inherent to CNNs to 
optimize super-resolution performance. Central to PFMDN are its mul
tiple feature distillation blocks, which facilitate the transmission of 
high-level semantic insights down to more foundational feature levels. 

The essence of this approach is to sieve through multi-scale features, 
streamline these details into condensed representations, and subse
quently merge them to produce a high-definition result. In this tech
nique, harvested patches undergo processing within the 
multi-distillation block, which incorporates the innovative pyramidal 
convolution mechanism. This convolution strategy, distinct for its 
employment of filter sets of diverse sizes, is deftly engineered to capture 
and represent features across varied scales. This multifaceted capture 
method empowers the network to adeptly discern and recreate 
high-frequency image details. The end product? Reconstructed imagery 
that stands out for its crystal-clear clarity and true-to-life fidelity. 

[62] introduced a novel approach to SR for anisotropic cardiac MRI 
images, leveraging the prowess of unsupervised deep learning. A dis
tinguishing feature of this method is its reliance on anisotropic images 
during training. Utilizing the dense, lower-dimensional latent space 
produced by an autoencoder, the model is trained to upscale the spatial 
resolution of these low-definition images. A particularly innovative 
feature of their approach is the use of two adjacent slice extractions 
tailored to discern features from the latent space. These slices are then 
cohesively merged using a method known as a convex combination, 
thereby improving the accuracy and richness of feature extraction. 
Perhaps the most remarkable feature of this technique is its unsuper
vised nature. Instead of relying on pre-existing high-resolution images as 

Fig. 3. Overview of methodologies used in this section.  
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a benchmark or "ground truth" during the training process, the model is 
conditioned to autonomously generate high-resolution outputs from 
provided low-resolution inputs. This self-reliant approach empowers the 
model to grasp and replicate the inherent structure of images, conse
quently enhancing the fidelity and quality of its super-resolution 
products. 

[63] introduced a unique approach that synergizes multiple con
volutional layers, each with distinct kernel sizes, to adeptly capture 
spatial features in images. This stratagem is further bolstered by a 
multi-head attention mechanism, which refines the model’s capability 
to zero in on pivotal regions within the image. Such a dexterous fusion of 
techniques ensures the generation of superior-quality super-resolution 
medical images. Such images hold the potential to significantly elevate 
clinical decision-making precision, ultimately leading to enhanced pa
tient care outcomes. However, a noteworthy trade-off is the computa
tional demand of such a sophisticated approach. Incorporating 
multi-head convolutional attention coupled with diverse kernel sizes 
invariably escalates computational needs. This could potentially hamper 
the model’s adaptability in real-time scenarios or its seamless deploy
ment on hardware with limited resources. [64], led by Stefanie, intro
duced a novel approach to ultrasound (US) medical image 
super-resolution tailored for breast cancer detection. Their method 
hinges on a nonlinear least-squares fit (LSF) combined with a saturation 
model. Using the LSF, they constructed the final high-resolution output 
image, which was determined by the relationships amidst the final 
coverage data. The core objective of their study was to gage the profi
ciency of this avant-garde imaging technique, particularly in pinpoint
ing and characterizing breast lesions. They aimed to demonstrate its 
superior accuracy and spatial resolution when juxtaposed against 
traditional super-resolution ultrasound (US) methodologies. However, a 
potential constraint of this technique arises from the elevated fre
quencies deployed in super-resolution US. These frequencies can curtail 
the penetration depth, which might constrict the method’s efficacy, 
especially when imaging breast tissues that are positioned deeper or are 
more voluminous. 

[65] put forth a method that fuses the strengths of wavelet transform 
and deep learning, targeting the precise enhancement of the resolution 
of CT images, ensuring that crucial features and intricate details are 
conserved. The process is initiated by decomposing the low-resolution 
CT images into wavelet coefficients across multiple scales. Subse
quently, a deep neural network is trained to ascertain the correlation 
between the wavelet coefficients of low-resolution and high-resolution 
images. However, there’s a potential pitfall associated with this 
approach. While the method is designed to meticulously retain critical 
features in the images that undergo super-resolution, there’s a risk of 
unintentionally accentuating any artifacts or noise that existed in the 
initial low-resolution images. Such amplification could be detrimental, 
possibly leading to a decline in diagnostic precision or even causing 
faulty interpretations. [66] introduced the Self-supervised MOtion-Re
sistant algorithm, specifically designed to ameliorate the quality and 
resolution of MRI scans. It aims to mitigate motion artifacts and 
accentuate intricate details, thereby potentially boosting diagnostic 
precision. The essence of this method is the self-supervised learning 
approach, enabling the model to adapt seamlessly across diverse MRI 
datasets. This adaptation is carried out without the necessity for paired 
ground-truth images, paving the way for a more robust and universal 
performance across myriad imaging situations. Yet, there is a subtle 
challenge attached to this methodology. While the self-supervised model 
eliminates the need for paired ground-truth images, it might still 
necessitate some form of supervision or defined constraints to ensure the 
results are both reliable and precise. This can present a hurdle, espe
cially in situations where such supervisory guidance is either hard to 
procure or entirely absent. As a result, while the approach offers 
commendable flexibility, its broad applicability might be constrained by 
these supervisory prerequisites. [67] introduce a deep learning-based 
method to reconstruct high-resolution images from lower-resolution 

inputs. The benefits of such a technique are promising, especially for 
the domain of medical imaging. However, practical considerations arise 
when contemplating its adoption in real-world clinical environments. 
The integration of this method into established clinical workflows and 
imaging systems could necessitate additional development and valida
tion, potentially impeding its swift adoption. 

[68] propose the deep dense network, DDSR, employing a dense 
connectivity scheme. This densely connected network, rather than 
having only adjacent layers communicate, facilitates input sharing 
across all preceding layers. This architecture is designed to enhance the 
learning of both low-level and high-level features during the feature 
extraction phase. Such an approach is particularly salient for medical 
imagery where both macro and micro features are vital for diagnosis. 
However, dense architectures might introduce additional computational 
overheads, demanding careful consideration of resource allocation for 
practical deployment. [69] have harnessed the capabilities of CNNs in 
the realm of CT imaging. Their approach centers on enabling CNNs to 
intricately understand and subsequently extract multifaceted features 
from low-resolution CT scans. The result is the generation of recon
structed high-resolution images that not only augment detail but also 
mitigate artifacts commonly associated with imaging processes. Despite 
the promising results, the architecture’s performance hinges on the 
careful selection and optimization of various parameters within the 
CNN. The number of layers, types of filters, and specific activation 
functions can greatly influence the output quality, necessitating rigorous 
experimentation to pinpoint the most effective configuration for specific 
imaging scenarios. In a somewhat parallel effort, [70] developed a 
CNN-centric methodology, focusing on the upscaling of low-resolution 
medical images to higher resolutions. Their approach, rooted in 
single-image super-resolution, has shown commendable prowess in 
conserving critical anatomical details and attenuating noise – challenges 
often faced in medical imaging. Yet, the singular focus on single-image 
super-resolution could be seen as a limitation. The inherent richness and 
potential of tapping into multiple images, or gleaning insights from 
varied imaging modalities, remains unexplored in their model. This 
untouched avenue could offer even further enhancements in image 
quality and diagnostic precision. [71] ventured into the domain of MRI, 
harnessing the capabilities of a sophisticated neural network structure. 
With foundational training on extensive datasets comprising both low 
and high-resolution MRI scans, the model showcases its adeptness at 
transmuting low-resolution images into their high-resolution analogs. 
This refined output accentuates the visualization of vascular structures, 
a crucial component in many diagnostic procedures. Nevertheless, the 
research design carries inherent limitations. A noticeable absence of a 
control group curtails the establishment of definitive causal links be
tween the intervention and its outcomes, thus introducing a degree of 
uncertainty regarding the efficacy of the proposed solution. In a related 
vein, [72] devised a technique rooted in the paradigm of self-texture 
transfer. The essence of this approach lies in its capability to astutely 
discern and transpose inherent texture nuances from the input to the 
output. The resultant super-resolved images exhibit superior quality and 
precise refocusing, a testament to the model’s proficiency. Delving into 
the specifics of the network’s architecture, it comprises a series of 
components meticulously orchestrated to capture, refocus, and amal
gamate the texture, ultimately culminating in a superiorly enhanced 
image. Nonetheless, every model has its Achilles heel. The case of [72] 
proposal grapples with images laden with pronounced occlusions or the 
distortions introduced by motion blur. Such anomalies pose a challenge, 
often obfuscating the accurate transference of texture details, thus 
potentially compromising the final image quality. 

[73] utilized dictionary training methods for their approach. Central 
to their technique is the use of an autoencoder, a specific kind of neural 
network known for feature extraction and dimensionality reduction. 
Their system is based on the premise that features derived from LR 
images can represent those from HR counterparts either directly or after 
an evaluation process. In terms of feature extraction, the method relies 
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on local features using receptive fields, with the number of filters being 
equal to the number of local features extracted. The method proposed by 
[74] is designed to improve the resolution and quality of fundus images. 
These images play a critical role in the precise diagnosis and tracking of 
several ocular conditions, including diabetic retinopathy, glaucoma, and 
age-related macular degeneration. Utilizing sophisticated image pro
cessing methods combined with machine learning algorithms, the 
approach captures diagnostic features. It then uses these features to 
derive high-resolution images from their low-resolution counterparts. 
However, a potential limitation is that the technique could be sensitive 
to noise and artifacts present in the initial images. Such interferences 
might compromise the quality of the resulting enhanced images. [75], 
introduced a network formulated to discern both local and global 
characteristics of the input image. This dual feature detection capability 
enables the model to yield high-quality super-resolution outcomes. The 
authors contend that the unique feature extraction technique employed 
in their approach adeptly captures intricate structures and nuances 
inherent in medical images, rendering their method, particularly fitting 
for tasks related to super-resolution in medical imaging. 

In the [76], the authors introduced an alternative approach based on 
a sub-pixel convolution layer, which incorporates additional enhance
ments to the network architecture via an upsampling layer. In this 
specific study, the feature extraction method employed is poised to be a 
pivotal element of the overall reconstruction process. This method is 
tasked with extracting features or patterns from the low-resolution input 
image and transmitting them through multiple layers within the neural 
network. [77] introduced a technique for fusing medical images, a 
process vital to diagnosis and treatment planning in the medical field. 
The proposed framework employs a custom-designed CNN architecture 
capable of efficiently capturing and integrating salient features from 
multiple input images. It is worth noting that the method’s generaliz
ability to diverse imaging modalities or medical conditions may be 
compromised if the training dataset lacks adequate coverage of these 
variations. Consequently, fusion performance could be diminished for 
cases that are either unrepresented or underrepresented. [78] developed 
a method that combines correlation filters and progressive CNN tech
niques to generate high-resolution images from low-resolution inputs. 
The model comprises a series of interleaved convolutional layers and 
correlation filters, which progressively enhance image resolution. Cor
relation filters play a crucial role in extracting pertinent information 
from the low-resolution input, subsequently guiding the progressive 
CNN to achieve superior high-resolution image reconstruction. How
ever, it is worth noting that the proposed method demands a substantial 
volume of training data to attain optimal results, a challenge particularly 
pertinent in the field of medical imaging, where annotated data is often 
limited in availability. In a related context, [79] have addressed the 
intricate task of preserving fine structures and upholding high-quality 
image details while concurrently reducing computational complexity. 
Their RDN architecture employs residual connections and dense blocks 
to facilitate effective feature learning and representation. Despite its 
design to mitigate computational complexity, it still necessitates 
considerable computational resources for both training and inference, 
potentially constraining its practical utility in real-time clinical settings. 

3.2. Deep residual network (DRN) 

Deep Residual Networks (DRN) have been proven to be highly 
effective for various computer vision tasks, including medical image 
super-resolution. DRN is a type of deep CNN that employs residual 
learning to address the vanishing gradient problem, a common issue in 
deep networks. By incorporating skip connections between layers, DRN 
can learn residual functions that are more amenable to optimization, 
allowing for the construction of deeper networks without compromising 
accuracy. The aforementioned methods and architectures offer efficient 
solutions for medical image super-resolution using DRN as a foundation. 
[80] proposed the 3D Deep Densely Connected Neural Network with the 

goal of enhancing the quality of brain MRI scans by employing a deep 
learning model to generate high-resolution images from low-resolution 
input data. The presented architecture incorporates dense connections 
between layers, facilitating the efficient learning of hierarchical features 
and promoting improved gradient flow. However, it’s important to note 
that this architecture demands substantial computational resources and 
memory for both training and inference. This resource-intensive nature 
may restrict its applicability in settings with limited resources or 
real-time applications. 

[81] presented a method for enhancing the resolution of medical 
images using multiple improved residual networks. The approach in
tegrates several improved residual network models that collaboratively 
work to generate high-resolution medical images from low-resolution 
inputs. By leveraging the strengths of each individual network and 
incorporating advanced training strategies. Integrating multiple residual 
networks may increase the computational complexity and memory re
quirements of the model, making it challenging to implement in 
real-time or on resource-constrained devices. [82] present an approach 
for efficient medical lesion image super-resolution using deep residual 
networks. The proposed method consists of a tailored architecture 
designed to handle the unique challenges posed by medical lesion im
ages, such as varying textures and noise levels. By employing residual 
learning blocks and advanced optimization techniques. The architecture 
and optimization techniques used in the model can be complex, making 
it difficult to interpret and understand the underlying decision-making 
process. [83] presented an approach for medical image 
super-resolution using deep residual neural networks in the shearlet 
domain. They proposed a framework that combines the advantages of 
shearlet transforms, which are well-suited for handling multi-scale and 
directional features in images, with the power of deep residual neural 
networks for learning complex patterns. The integration of deep residual 
neural networks and shearlet transforms may lead to increased 
computational complexity and longer processing times, making it less 
suitable for real-time applications. 

The presented method [84] aims to enhance the quality of 
low-resolution medical images by reconstructing them into 
high-resolution versions while preserving essential details and mini
mizing artifacts. The residual network architecture enables the model to 
learn and leverage residual information between low and 
high-resolution images, effectively capturing complex image features. 
Although the method aims to minimize artifacts, it may still introduce or 
amplify noise in the reconstructed images, potentially affecting their 
diagnostic value. [85] presented a method to improve the image quality 
and resolution of dental CT scans using deep learning-based super-
resolution techniques. By leveraging advanced neural networks, the 
proposed method enhances the clarity and detail of dental CT images, 
enabling more accurate diagnosis and treatment planning for dental 
professionals. Implementing the deep learning-based super-resolution 
method in existing dental CT workflows may require significant changes 
to software and hardware infrastructure, as well as overcoming potential 
regulatory hurdles. [86] presented methods to improve the quality and 
resolution of medical images, making them more reliable for diagnosis 
and treatment planning. The method incorporates a dense network 
structure, which enhances feature extraction and image details. Feed
back mechanisms and adaptive weighting are employed to optimize the 
learning process and minimize reconstruction errors. The dense network 
structure and feedback mechanisms may increase the computational 
complexity of the model, requiring more processing power and poten
tially resulting in slower processing times. 

[61] presented an approach for enhancing the resolution of cardiac 
magnetic resonance images using dual U-Net residual networks. The 
presented method leverages two U-Net architectures in parallel to 
effectively capture high-frequency details and preserve contextual in
formation. Dual U-Net residual networks are vulnerable to adversarial 
attacks, where small, carefully crafted perturbations to the input data 
can lead to incorrect outputs. This vulnerability could have serious 
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implications in the context of medical imaging. [87] presented a deep 
learning-based approach for enhancing the resolution of 2D fetal brain 
MRI scans. The presented method, called Deep Robust Residual 
Network, leverages the power of residual learning to address the chal
lenges posed by the low resolution and noise in fetal brain MRI. The 
performance of the above method relies heavily on the quality and 
quantity of training data. Any bias or inadequacy in the training dataset 
could negatively impact the network’s generalization to unseen cases. 

This study [88] presents an approach based on Double Paths 
Network with Residual Information Distillation, for enhancing the 
super-resolution of lung CT images. This method leverages a 
double-path architecture that separately processes high and 
low-frequency information while maintaining spatial context. The re
sidual information distillation module further refines the reconstructed 
image by extracting and fusing multi-scale features. Due to the deep 
architecture and multiple feature maps generated, the presented method 
has high memory requirements, which constraint for deployment on 
resource-limited devices. [89] combines the strengths of multi-attention 
networks and wavelet transforms to improve the super-resolution pro
cess. The multi-attention network learns the important features from 
various imaging modalities, while the wavelet transform aids in 
capturing both high-frequency details and low-frequency content. The 
use of a multi-attention network with wavelet transform makes it diffi
cult to interpret the internal workings of the model. This can limit the 
ability to diagnose and fix any potential issues with the model. 

3.3. Generative adversarial network (GAN) 

GAN [90] is a type of neural network architecture that consists of two 
networks, a generator, and a discriminator, that work together to 
generate realistic synthetic data. In the context of medical image 
super-resolution, GANs have shown promising results in producing 
high-resolution medical images from low-resolution input images. 
Medical images, such as CT scans or MRI images, often require high 
resolution in order to accurately diagnose and treat medical conditions. 
However, acquiring high-resolution images can be expensive and 
time-consuming. GANs can help overcome this challenge by generating 
high-quality, high-resolution images from low-resolution input images. 
The generator network in a GAN takes a low-resolution image as input 
and produces a high-resolution image as output. The discriminator 
network then evaluates the quality of the generated image and provides 
feedback to the generator network, which adjusts its parameters to 
produce a more realistic image. This process continues iteratively until 
the generator network produces high-quality, high-resolution images 
that are indistinguishable from real images. One advantage of using 
GANs for medical image super-resolution is that they can be trained on 
small datasets, which is particularly useful in the medical domain where 
data is often scarce. Additionally, GANs can generate diverse images, 
allowing clinicians to explore a range of possible diagnoses. However, 
there are also some challenges associated with using GANs in medical 
image super-resolution. One challenge is the potential for bias in the 
generated images, which could lead to incorrect diagnoses or treatment 
plans. Another challenge is the need for large amounts of computational 
resources, which can be a limitation in some medical settings. To 
overcome these challenges recent studies presented their own solution 
for this. 

The study proposes a method [91] for medical image 
super-resolution using Progressive GAN. The model is trained progres
sively, with each stage generating higher-resolution images than the 
previous one. While the proposed method shows promising results on 
various medical image datasets, its generalization ability to unseen data 
and different medical applications remains to be evaluated. Further 
research is needed to assess the method’s robustness and adaptability in 
different medical settings. [92] method incorporates a self-attention 
mechanism, residual blocks, and a perceptual loss function to generate 
high-resolution medical images from low-resolution inputs. The 

proposed method relies on the availability of paired low and 
high-resolution images for training, which may not always be readily 
available in certain medical imaging applications. In addition, [93] 
presented an SR method for medical imaging using a relativistic average 
generative adversarial network, which improves medical images 
through numerical measures and visual outputs. Feature extraction is 
applied by a generator consisting of a residual channel attention block 
that recalibrates the values of certain channels. [94] proposed an 
innovative approach to enhance the performance of super-resolution 
generative adversarial networks by incorporating an autoencoder for 
dimensionality reduction. The proposed method focuses on reducing the 
computational complexity and memory usage of the model, enabling 
more efficient and accurate image super-resolution tasks. The autoen
coder effectively captures the essential features of the input images and 
reduces the dimensionality, which in turn allows the GANs to generate 
higher-quality super-resolved images with reduced resource re
quirements. The autoencoder may not always produce an ideal latent 
space representation, which could affect the quality of the generated 
super-resolved images. Inadequate representation might lead to the loss 
of essential image features or the introduction of unwanted artifacts. 

By utilizing a specifically designed GAN [95] architecture and 
incorporating domain-specific knowledge, the proposed model achieves 
superior performance in reconstructing high-resolution images from 
low-resolution input, while preserving critical diagnostic information. 
Designing and fine-tuning the GAN architecture requires a deep un
derstanding of the underlying concepts, which may be challenging for 
non-experts to implement and optimize. [96] introduced an SR of CT 
images based on a GAN constrained through an identical, residual, and 
cycle learning ensemble (GAN–CIRCLE). The GAN–CIRCLE model can 
retain detailed information about the CT images and overcome existing 
noise. Feature extraction proceeds by utilizing the convolution layer to 
capture both the global and local image features and all hidden layer 
outputs concatenated through a skip connection, which helps prevent 
overfitting and network saturation. The main idea behind the 
GAN–CIRCLE method is to use a GAN architecture that is constrained 
by three different loss functions: identical loss, residual loss, and cycle 
loss. By combining these three loss functions, the GAN–CIRCLE method 
is able to effectively extract high-resolution features from low-resolution 
CT images. The proposed model [97] leverages high-resolution repre
sentation learning to enhance the quality of low-resolution medical 
images. By generating more detailed, high-resolution images, the model 
aims to improve the accuracy and efficacy of medical image analysis, 
aiding in better diagnosis and treatment planning. The performance of 
the model is dependent on the quality and diversity of the training data. 
If the model is trained on a limited dataset, it may not generalize well to 
different imaging modalities, anatomical structures, or pathological 
conditions. Another architecture [98], involves three players: a gener
ator, a discriminator, and a reconstructor. The generator creates 
high-resolution MRI images, while the discriminator assesses whether 
these images are real or not. The reconstructor, on the other hand, en
sures that the generated high-resolution images are consistent with the 
low-resolution MRI images. The three-player GAN architecture is 
trained in an adversarial manner, where the generator tries to fool the 
discriminator, while the reconstructor ensures that the generated images 
are realistic. The Three-Player GAN requires large amounts of 
high-resolution MRI images to train effectively. If there is limited 
availability of such data, the performance of the method can be 
impacted. 

[99] presented an approach, dubbed Super-Resolution of Unsampled 
Pixels using GAN, which leverages the strengths of GANs to generate 
high-resolution MRI images from lower-resolution inputs. By training 
the GAN on a large dataset of MRI scans, the proposed method is able to 
effectively reconstruct missing details and enhance image quality. The 
performance of the model may vary across different MRI acquisition 
protocols, scanner types, or patient populations. Further research is 
needed to ensure that the method can be effectively applied to a wide 
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range of clinical scenarios. The proposed method [100] aims to improve 
the quality and resolution of MR images by leveraging the capabilities of 
GANs, which consist of a generator and a discriminator network. The 
proposed model requires large amounts of computational resources and 
time to train, which may limit applicability in resource-constrained 
environments or real-time applications. [101] authors aim to enhance 
the quality and resolution of medical images, such as MRI, CT, and ul
trasound scans, which are critical for accurate diagnosis and treatment 
planning. By leveraging advancements in GANs, the proposed method 
effectively upscales low-resolution images while preserving important 
anatomical structures and details. The improved GAN incorporates 
innovative techniques for better stability, loss function optimization, 
and image generation quality. The method’s performance is sensitive to 
hyperparameter tuning and architecture design choices, which can 
affect the overall image quality and stability of the model. [102] pre
sented a novel multi-supervised SRGAN for enhancing the resolution of 
cytopathological images. This method aims to improve the diagnosis of 
diseases by providing better-quality images for cytopathologists to 
analyze. The proposed model, combines the advantages of deep 
learning-based super-resolution techniques and the adversarial training 
framework, enabling it to generate high-resolution images with 
enhanced details and reduced artifacts. The multi-supervised approach 
integrates multiple loss functions to optimize the training process and 
achieve superior performance in terms of image quality and diagnostic 
accuracy. 

[103], a medical SR method based on the GAN architecture is pro
posed, which is improved through adaptive calibration of the function 
response per channel by expressly structuring the interdependencies 
among the channels. The image quality of the reconstruction is 
improved through adaptive calibration of the functional response and a 
loss of fusion, which can increase the range of low-level features during 
the training and image reconstruction processes with upward detailed 
structures for higher scaling factors. [102] employs a channel attention 
mechanism within the generator and discriminator networks to focus on 
relevant features, improving the performance of the super-resolution 
process. The proposed method demonstrates promising results in 
providing high-quality images for better tumor detection and segmen
tation in glioma MRI. The method may not perform as well on other MRI 
datasets or medical imaging modalities, as it has been specifically 
designed for glioma MRI. In [104], SR for MR images is proposed using 
ensemble learning based on a deep learning method. The authors 
applied parallel generative models using previous image feature infor
mation as complementary data for the reconstruction step, and the last 
generative model is used to combine all images through ensemble 
learning. The next study [105] presented an approach for improving the 
resolution of brain MR images using fine-perceptive GANs in the wavelet 
domain. The presented method combines the power of GANs with 
wavelet transformations to enhance the fine details and structures of 
brain MR images. By working in the wavelet domain, the method 
effectively captures and preserves high-frequency information, leading 
to better super-resolution performance. While the method demonstrates 
improvements over existing techniques, its practical usefulness in clin
ical settings is limited if the enhancement does not translate into better 
diagnostic accuracy or improved patient outcomes. 

[106] proposed a GAN-based CapsNet [107] MRI SR method for 
cancer classification. CapsNet increases the model robustness and power 
of the generalization to improve the output quality of an SR-utilized 
MSGGAN. The feature extraction process is applied using DenseNet, 
where each dense block consists of four layers and the outputs of each 
layer are connected. However, DenseNet primarily focuses on learning 
global features across the entire image, which can result in the loss of 
important spatial information in individual image patches. This can be a 
challenge when trying to extract fine-grained features from each patch. 

3.3.1. Subsection of GAN: recent advances gan models with transformers in 
medical image super-resolution: a paradigm shift 

In recent years, transformer architectures, initially introduced for 
natural language processing tasks, have significantly impacted the 
computer vision arena, especially in the area of medical imaging. These 
architectures, with their unique attention mechanisms, offer the ability 
to process sequences of data and capture long-range dependencies. Such 
capabilities are particularly valuable for super-resolution (SR) tasks in 
medical images. Several transformer-based models have emerged 
catering specifically to medical image SR. Adapting models like ViTs or 
integrating local convolutions with global attention mechanisms have 
shown promising results in preliminary studies. Based on the trans
formers model [108] presents a comparative analysis of different 
single-image SR architectures with a focus on the SwinIR Transformer 
when applied to medical imaging. The primary goal is to enhance the 
resolution of medical images, thereby ensuring a more detailed under
standing of anatomical structures. Traditional architectures like SRGAN, 
BSRGAN, and RealESRGAN were benchmarked against SwinIR. The 
study found that the SwinIR Transformer notably outperformed other 
models, achieving superior peak signal-to-noise ratio (PSNR) and 
structural similarity metric (SSIM) metrics, making it a promising tool 
for high-fidelity medical image super-resolution tasks. [109] propose a 
deep learning strategy, named T-GAN, that integrates Transformer and 
generative adversarial networks (GANs) for the super-resolution 
reconstruction of medical images, especially in low-field MRI scans. 
The introduction of the Transformer mechanism allows for better 
texture information extraction and enhances focus on essential image 
regions. The model employs a unique multi-task loss function, 
combining content loss, adversarial loss, and adversarial feature loss. 
Comparative evaluations demonstrate that T-GAN outperforms con
ventional metrics in MRI scans of knees and abdomen by achieving su
perior texture feature recovery and overall image quality. While the 
model successfully recovers more texture features, it might overly 
emphasize them, potentially overshadowing other clinically relevant 
features. 

[110] authors address the challenge of down-sampling MRI 
super-resolution reconstruction, highlighting the traditional compressed 
sensing method’s limitations. They introduce” SMIR”, a novel MRI 
reconstruction model based on the Swin Transformer. Unlike prevalent 
convolutional neural network-based methods, SMIR harnesses the 
power of transformers to achieve superior image reconstruction out
comes. With its dual-module structure focusing on multi-level feature 
extraction and image reconstruction, the model employs both frequency 
and spatial domain losses to enhance image detail reconstruction. 
Comparative analysis with existing traditional and advanced methods 
demonstrates SMIR’s superior performance in MRI super-resolution 
reconstruction. [111] TransMRSR introduces a two-stage, trans
former-based approach for enhancing the resolution of brain MRIs. 
Combining both local feature extraction via convolutional blocks and 
global information capture through transformers, this method specif
ically tackles challenges posed by MRI’s low through-plane resolution. 
To harness more diverse priors, a GAN is incorporated, culminating in 
superior super-resolution results when compared to standard 
single-image super-resolution methods. The self-distilled truncation 
trick further refines the model, minimizing latent space shifts that could 
arise from the two-stage training process. 

The complexity of combining convolutional and transformer blocks, 
along with a GAN, might make the model susceptible to overfitting, 
especially if not provided with a diverse and large enough training 
dataset. In the quest to improve MRI quality under challenges like 
budget constraints and image degradation, [112] introduces SIFormer. 
This innovative hybrid framework not only enhances the resolution of 
under-sampled MR images but also fills in missing sequences. By syn
ergizing the strengths of transformers and convolutional networks, 
SIFormer captures both global and local image information effectively. 
Tested against six prominent methods, SIFormer showcased better 
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performance, promising a potential breakthrough in clinical MRI 
acquisition. [113] introduces AID-SRGAN, an advanced model designed 
for super-resolution in radiographic images. This approach encompasses 
a unique medical degradation model, capturing a wider array of 
degradation elements beyond standard downsampling. Using an 
attention-driven mechanism, the model adeptly performs denoising and 
high-resolution radiograph generation. Results indicate its superior 
performance, with significant improvements over existing methods like 
SPSR.While the AID-SRGAN shows improvement over SPSR, it may not 
outperform all other state-of-the-art methods, or its improvements 
might be marginal in real-world applications. 

3.4. Attention-based models 

The application of attention-based models in medical image super- 
resolution generally follows the same principles as in other image 
super-resolution tasks. The main idea is to use attention mechanisms to 
focus on specific regions or features of the input image that are most 
relevant to the task of enhancing the resolution. 

[114] method aims to enhance the quality of low-resolution images 
by reconstructing them into high-resolution versions. The proposed 
approach leverages deep residual networks and channel attention 
mechanisms to effectively learn and exploit hierarchical features from 
the input images. The channel attention mechanism helps to adaptively 
recalibrate channel-wise feature responses, focusing on important 
channels and suppressing less relevant ones. This study [115] proposes a 
novel medical image super-resolution method based on a Dense Blended 
Attention Network. The method aims to improve the quality and reso
lution of medical images by leveraging a dense connection structure and 
a blended attention mechanism. The dense connection structure enables 
the efficient propagation of features and gradients, while the blended 
attention mechanism allows the model to focus on important regions 
and features within the images. The complex nature of the model can 
make it difficult to interpret the underlying reasons for its decisions. This 
could be a concern in clinical settings where understanding the rationale 
behind a model’s predictions is crucial for decision-making and trust. 

The presented [116] approach for X-Ray images, leverages wavelet 
transforms to decompose images into different frequency bands, 
allowing the network to focus on specific frequency components during 
the super-resolution process. By incorporating attention mechanisms, 
the model can selectively emphasize important regions and features in 
the X-ray images. The integration of wavelet transforms and attention 
mechanisms increases the computational complexity of the model, 
making it slower and more resource-intensive than simpler 
super-resolution techniques. The main goal of the model presented 
[117] is to improve the quality of low-resolution medical images by 
enhancing their spatial resolution while preserving important details 
and structures. The proposed method combines multiple attention 
mechanisms with a feedback loop in order to better capture and exploit 
hierarchical features from the input images. The combination of multi
ple attention mechanisms and a feedback loop leads to increased 
computational complexity, making the network more resource-intensive 
and slower to train and deploy, especially on large datasets or 
high-resolution images. 

This [118] paper presents a novel approach called Residual Dense 
Attention Networks for enhancing the resolution of COVID-19 CT im
ages. The method combines residual learning, dense connections, and 
attention mechanisms to effectively upscale low-resolution CT scans, 
providing higher-quality images for improved diagnostics and analysis. 
The proposed [119] approach combines the strengths of the Swin 
Transformer, an efficient and powerful vision transformer, with atten
tion mechanisms to effectively learn and exploit local and global 
contextual information. The model effectively upscales low-resolution 
CT scans into high-resolution images, improving the quality and accu
racy of diagnosis for medical professionals. The presented model inherits 
the limitations of the Swin Transformer architecture, such as sensitivity 

to hyperparameter choices, which might affect the model’s robustness 
and performance. The presented [120] method aims to improve the 
resolution of MRI images while maintaining low computational re
quirements. The model integrates multi-scale features and bidirectional 
fusion attention mechanisms to capture both local and global contextual 
information effectively. The resulting network offers enhanced image 
quality and better preservation of fine details in MRI scans, making it a 
promising solution for clinical applications where high-resolution im
ages are essential but computational resources may be limited. 

This study [121] presents a model, called MS-DRCA-Net, to enhance 
the resolution of pulmonary nodule images from low- resolution CT 
scans. By incorporating a multi-scale architecture, deep residual con
nections, and channel attention mechanisms, the model effectively 
captures contextual information for image reconstruction. The joint 
optimization technique further improves the model’s performance. The 
complex architecture of the MS-DRCA-Net, combined with the joint 
optimization technique, leads to overfitting, particularly when the 
available training data is limited or the model is not adequately regu
larized. The objective of the presented study [122] is to enhance the 
quality of low-resolution MRI images by reconstructing them into 
high-resolution images while maintaining accurate details. The pre
sented model combines the strengths of back projection for iterative 
image refinement, residual learning to capture local and global 
contextual information, and attention mechanisms for adaptive feature 
extraction. The presented method [123] focuses on improving the 
quality and accuracy of low-resolution chest CT scans, which is crucial 
for better diagnosis and treatment of various lung diseases. The pixel 
attention mechanism enables the network to adaptively weigh and pri
oritize the most relevant features within the images. The method faces 
challenges when processing large images or volumetric data, as the 
memory and computational requirements could become prohibitive. 
This necessitates the use of patch-based approaches or other strategies to 
efficiently process large images. 

3.5. Recurrent neural network (RNN) 

RNNs can be used for medical image super-resolution tasks, which 
involve enhancing the resolution of low-quality medical images to 
produce high-quality images. [124] is a research study that proposes a 
method for improving the resolution of medical images by leveraging 
advanced deep-learning techniques. This approach allows for enhanced 
image quality at any desired scale, enabling more accurate diagnoses 
and better clinical decision-making. Depending on the complexity of the 
model and the desired resolution, processing times vary, which is a 
limitation in time-sensitive clinical settings. The next [125] method 
combined discrete wavelet transform (DWT) and RNNs to achieve effi
cient and high-quality compression. DWT was used to decompose the 
medical images into multi-scale and multi-orientation sub-band images, 
while RNNs were employed to model the dependencies among the 
sub-band images and perform the compression. The paper reported 
significant improvements in compression performance while maintain
ing image quality compared to traditional methods. However, imple
menting a combination of DWT and RNNs might increase the 
computational complexity of the compression process, which concerns 
resource-limited settings or situations where real-time processing is 
required. This [126] method addresses the challenge of efficiently 
reconstructing high-quality MR images from radial k space data, which 
often results in artifacts and inaccuracies due to the non-Cartesian na
ture of the sampling. The RNN-based approach leverages the inherent 
temporal dependencies in the k-space data to model and learn the un
derlying structure, ultimately producing improved image quality. 
However, the presented model has high computational complexity, 
which could lead to longer reconstruction times, making it less suitable 
for real-time or online applications. 
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3.6. Single-contrast super resolution 

Single-contrast Super Resolution refers to a technique used in the 
field of image processing, which aims to enhance the resolution of an 
image without the need for multiple images or additional input data. In 
essence, the goal is to create a high-resolution image from a single low- 
resolution input. Single-contrast medical image Super Resolution is a 
specific application of super-resolution techniques that focuses on 
enhancing the resolution of medical images obtained from various mo
dalities, such as MRI [127], CT [128], X-ray [129], ultrasound [130], 
and PET [131]. The goal is to improve the image quality and diagnostic 
accuracy without increasing the imaging time or radiation exposure to 
patients Table 2. Based on one or more LR inputs from the same mo
dality, single-contrast SR algorithms attempt to reconstruct an HR rep
resentation of the object. Because of their ease of usage, bicubic and 
bi-spline interpolations are two super-resolution techniques frequently 
utilized in image SR. However, both methods unavoidably result in 
blurred and noisy output. The limited SR capability of the interpolation 
technique can be overcome through the use of deep learning methods, 
which resolve a large number of issues with a traditional SR method. In 
this study, we are mainly focusing on learning-based technologies of 
single contrast (see Sections 3.1,3.2,3.3,3.4,3.5), where algorithms learn 
the mapping from low-resolution to high-resolution images, which 
include deep learning techniques such as CNNs and GANs. 

3.7. Multi-contrast super resolution 

Multi-contrast Super Resolution (MCSR) is a technique used in 
medical imaging, specifically MRI [176], to enhance the resolution and 
quality of images. It combines information from multiple image con
trasts to generate a high-resolution image with improved tissue contrast 
and reduced noise. This technique is particularly useful in applications 
where high-resolution and high-contrast images are crucial for accurate 
diagnosis or treatment planning. MCSR has shown promising results in 
improving image quality and resolution in various applications, such as 
neuroimaging, musculoskeletal imaging, and cardiovascular imaging. In 
this section we are focusing on MCSR technologies based on deep 
learning and below we give detailed descriptions of some state-of-the-art 
methods that represent information about models and their results 
Table 3. 

T1w and T2w are the most frequently acquired multi-contrast images 
in MRI scans [177]. By contrast, the two inputs of the same object 
exhibit several edge features. MRI creates images with multiple con
trasts and can clearly visualize soft tissue. However, the present SR 
techniques only use a single contrast or a basic multi-contrast fusion 
process, neglecting the relationships between various contrasts that are 
important for enhancing the SR. [184] presented a technique for 
multi-contrast MRI super-resolution using a Multi-stage Integration 
Network (MIN). The proposed method aims to enhance the spatial res
olution of multi-contrast MRI images by integrating information from 
multiple low-resolution images and exploiting their inter-modality re
lationships. The MIN architecture consists of several stages that pro
gressively fuse and refine the high-frequency information from different 
contrast channels, resulting in a high-resolution output image. The 
effectiveness of the MIN relies on the assumption that there are strong 
inter-modality relationships between the different contrast MRI images. 
If these relationships are weak or absent, the performance of the model 
could be limited. 

Multi-image SR contrast [190,191] is created by utilizing LR images 
obtained from the same frame with a slightly shifted field of appearance. 
SR has been proposed for medical images based on a multi-contrast 
structure and has shown good results in this field. In [178], the au
thors suggested a model for obtaining richer features from input MR 
images and reconstructing them as SR MR images. They proposed a 
multiscale network with a wide-weighted attention structure. To obtain 
more features, they presented a region-based attention mechanism that 

Table 2 
Benchmarking of single medical image SR models. The image property index is 
presented by the structural similarity metric (SSIM) and the peak signal-to-noise 
ratio (PSNR).  

Model Image type Training dataset SSIM PSNR 

[59] MRI DIV2K [132] 90% 31.96 
MSG Caps GAN 

[106] 
MRI PROSTATEx [133] 79% 21.09 

MFHAN [58] CT DIV2K [132], 
Covid-CT [134] 

85.32% 34.53 

DNSP [135] MRI Brainweb [136]( 95% 32.13 
GAN 

framework 
[104] 

MRI NYU fastMRI [137] 92% 31.35 

W-SRCNN [65] CT The American 
Association of 
Physicists in 
Medicine (SPIE- 
AAPM) Lung CT 
challenge dataset 

NA 34.04 

DCSRN [80] MRI The human 
connectome 
project [136] 

93.12% 35.05 

SRDWT [89] CT/MRI DIV2K [132] 94.1% 36.97 
GAMA [117] CT LDC [138] 98.87% 48.73 
SMORE [66] MRI NA 95% 38.0 
RDAN [118] CT T91 [139], BSD500 

[11],Set5 [140] 
88.8% 31.69 

DURN [61] MRI Set5 [140] 96% 37.86 
Med-SRNet 

[97] 
CT COVID-19 [134] 89.1% 31.16 

SRGAN [141] MRI PROSTATEx [133] 66% 21.03 
AUTOMAP 

[142] 
MRI YouTube-8 M 

[143] 
92% 35.4 

Deep 
Attention- 
based 
Method 
[144] 

MRI NA 98% 35.39 

GANCNN [92] MRI/Retinal 
fundoscopy/Skin 
cancer 

DRIVE(/ [145], 
ISIC [146], BraTS 
[147] 

95% 
(MRI) 

38.83 
(MRI 
dataset 
results) 

ESRGAN [148] MRI DS000113 [149] 94% 26.92 
MIASSR [124] MRI OASIS-brains 

[150], BraTS 
[147], ACDC [151] 

95% 36.46 

Low field MR 
images [70] 

MRI fastMRI [137] 95% 35.39 

CNN: Subpixel 
[85] 

CT vivo CBCT [152] 91% 24.50 

GAN–CIRCLE 
[96] 

CT Tibia [153], 
Abdominal [154] 

92.4% 27.25 

Three-Player 
GAN [98] 

MRI Body Datasets 
[155], Knee dataset 
[143] 

94.3% 36.92 

EDSR [101] CT DRIVE [145], 
STARE [156] 

99% 38.00 

GAN–CIRCLE 
[157] 

CT NSCLC [158] 85% 28.5 

CFIPC [78] MRI DRIVE [145] 96.72% 42.20 
IDMAN [88] CT DeepLesion [159] 94% 34 
MRC–Net [52] CT CAD-CAP [160] 95.43% 35.58 
RRLSRN [87] MRI Kirby 21 [161] 98.97% 39.40 
CT-SRCNN 

[162] 
CT CT The Cancer 

Imaging [163] 
92% 32.98 

DRIDSR [88] CT COVID-CT [134] 83% 31.89 
MSBFAN [120] MRI IXI [164] 92.66% 31.41 
PBPN [89] CT BSD500 [11], T91 

[139] 
96% 37.80 

WFSAN [116] CT ChinaSet [165] 89% 35.43 
SISR [166] Microscopic 

Imaging 
MaMic [167] 84% 29.62  

CESR-GAN 
[168] 

Microscopic 
Imaging 

International Skin 
Imaging 
Collaboration 
[169] 

94% 42 

(continued on next page) 
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extracts the features through a selection process. [179] presented the 
method Model-Guided Multi-Contrast Deep Unfolding Network 
(MG-MCDUN) for MRI super-resolution reconstruction. The proposed 
method aims to improve the spatial resolution of MRI images while 
preserving fine details and reducing artifacts. The network combines the 
advantages of model-based and learning-based approaches by 
leveraging multi-contrast information and unfolding iterative optimi
zation steps. [180] method uses a disentangled conditional diffusion 
model to enhance the resolution of the MRI scans while preserving the 
important imaging contrasts. The method aims to improve the accuracy 
and consistency of MRI super-resolution by addressing the challenges 
posed by the differences in contrasts between different MRI scans. The 
diffusion process used in the method may result in the over-smoothing of 
the images, which can lead to the loss of important features. 

[181] presented a parallel constructed network for the SR of 3D MR 
and CT images. The authors built their model by replacing the convo
lution layers with lightweight modules, which were constructed using a 
separable 2D cross-channel convolution. [183] proposed SR for MR 
brain images based on the local weight similarity (ILWS) among 
multi-contrast inputs. Multi-contrast input images show the distribution 
density of the subject, and they largely distribute corresponding struc
tures with various contrasts within the range of relative LR images. The 
authors of [192] proposed a multi-contrast SR for MR images with a 
separable attention network, which includes the relationship between 
the foreground and background and provides rich edge information 
about the image. [185] presented a model called Multi-Scale Deform
able Transformer (MDT) for the task of multi-contrast knee MRI 
super-resolution. MDT aims to improve the resolution of knee MRI im
ages by leveraging information from multiple contrasts, while simulta
neously preserving fine structures and details. The method employs a 

deformable transformer architecture, which is capable of capturing 
long-range dependencies and handling spatial variations. This enables 
the model to effectively learn the relationship between different contrast 
levels and generate high-resolution images with enhanced quality. The 
presented model decision-making process can be difficult to interpret, 
making it challenging to understand the reasoning behind the generated 
super-resolution images. 

In [186], the authors used a generative algorithm to super-sample 
low-resolution MRI images to establish resulting data with an effi
ciently higher spatial resolution than the original while retaining 
structural integrity. [187] introduced a model based on LR image 
characteristic gradient features to recover the high-frequency details of 
HR images, utilizing a gradient edge enhancement model to calculate 
the analogy among input patches with various contrasts. To obtain 
super-resolved MRI and CT scans [162] applied a multi-modal convo
lution attention module by extracting useful information from various 
attention channels. [64] presented a method for improving the resolu
tion of MRI scans using neural networks. The method utilizes multiple 
contrasts MRI scans and an implicit neural representation to enhance the 
resolution of the scans, resulting in a more detailed and accurate image. 
This approach can be used to improve the visualization of small struc
tures and features in MRI scans, which can have important applications 
in medical imaging and diagnosis. [172] presented a method for 
improving the resolution of MRI scans using a combination of deep 
learning and computer vision techniques. The approach uses a 
transformer-based model to perform multi-scale contextual matching 
and aggregation to enhance the resolution of the MRI scans. The method 
is evaluated on multiple datasets and demonstrates improved results 
compared to traditional super-resolution methods. The model presented 
in the paper is complex, making it difficult to implement and use in 
real-world applications. 

3.8. Applications of super resolution in healthcare 

The integration of SR techniques within the healthcare sector sig
nifies a pivotal transformation, promising enhanced diagnostics and 
better patient outcomes. This section delves into various applications of 
SR in healthcare, underscoring the profound impact of this technology. 

The successful application of SR in healthcare was demonstrated 
through an examination and modeling of the collaboration between AI 
and medical specialists by [193]. In their study, cancer lesions were 
manually segmented in accordance with the expertise of specialist ra
diologists, and the performance of the AI models was compared to that 
of expert radiologists. In the work of [194], a Super-Resolution Gener
ative Adversarial Network (SRGAN) was developed to enhance medical 
images, specifically utilizing apparent diffusion coefficient (SR-ADC) 
and enhanced deep SR (EDSR) network images through bicubic inter
polation. [162], introduced an SR-based application for chest CT im
ages, achieving image restoration that closely approximated the original 
ground truth. In the work of [141], they proposed a resolution 
enhancement application for MR images using a generative network 
with a preference for upsampling layers over downsampling layers. The 
authors accomplished this by restoring comprehensive textures based on 
downsampled images and training a discriminator capable of dis
tinguishing between an SR image and a high-quality source image. In the 
study conducted by [195], they introduced a multiscale CNN-based 
image SR application that utilizes weighted least-squares (WLS) opti
mization. Their framework employs a WLS setup to perform 
edge-preserving operations that smoothen the image while simulta
neously maintaining the edges and enhancing them. This is achieved by 
striking a better balance between blurring and sharpening. Additionally, 
they created an SR model by training CNNs using wavelet analysis and 
incorporated wavelet filters to endow the CNNs with local processing 
capabilities. 

In the work of [52], the authors introduced an SR-based medical 
diagnosis framework that leverages both local and global image 

Table 2 (continued ) 

Model Image type Training dataset SSIM PSNR 

CGAN [102] MRI Set5 [140] 88.3% 30.53 
WA-SRGAN 

[170] 
Microscopic 
Imaging 

Breast Cancer 
Histopathological 
Image [171] 

96% 28.74 

[172] MRI NA 88.61% 35.08 
STSRNet [72] MFP Refocusing and 

Super-resolution 
Dataset for 
Cytology [173] 

95.8% 35.47 

PathSRGAN 
[102] 

Cytopathological 
images 

NA 88% 26.92 

FP-GAN [105] MRI ADNI [174,175] 88.16% 28.30  

Table 3 
Benchmarking of multi-contrast medical image SR models, where given infor
mation about used datasets.  

Model Image 
Type 

Training Dataset SSIM PSNR 

McMRSR [177] MRI fastMRI [137] 90% 33.28 
W2AMSB [178] MRI IXI [164] 99% 41.72 
MGDUN [179] MRI IXI [164] 96.37% 35.97 
DisC-Di [180] MRI IXI [164] 95.51% 31.43 
VolumeNet [181] MRI Liver Tumor 

Segmentation [182] 
96% 31.61 

Based NEDI [183] MRI NA 94% 33.89 
SANet [184] MRI fastMRI [137] 99% 35 
MSDT [185] MRI fastMRI [137] 61.5% 30.38 
MCSR [186] MRI IXI [164] 97% 38.51 
Gradient-Guided 

Edge 
Enhancement 
[187] 

MRI NAMIC Wiki [188] 96% 34.44 

MMHCA [63] MRI NA 98% 40.43 
INR [64] MRI BraTS [147] 

MSSEG [189] 
97% 32.51  
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features. Furthermore, they proposed a block for substituting features 
while establishing a semantic connection between examples and the 
central intersection of multi-scale information. 

In a related study, [170] presented an innovative approach to 
enhance the diagnosis of age-related macular degeneration (AMD). They 
achieved this by improving the quality of optical coherence tomography 
(OCT) images using unsupervised super-resolution techniques based on 
GANs. Their proposed method involves training a GAN to generate 
high-resolution OCT images from lower-resolution input images, all 
without the need for paired ground-truth data. This enhancement in 
image quality enables better visualization of macular structures, leading 
to more accurate and reliable AMD diagnoses, potentially benefiting 
millions of patients worldwide. These super-resolution techniques have 
found applications in various medical fields like neuroimaging, cardiac 
imaging, and oncology, enhancing the visualization of fine anatomical 
structures and pathological changes. However, these techniques also 
have limitations, including the need for large training datasets, sensi
tivity to noise, and potential generation of non-existent details. 

3.8.1. Subjective analysis of state art medical image SR applications 
Medical image super-resolution has significantly improved the 

clarity and details in diagnostic images such as X-rays, CT scans, and 
MRIs. Enhanced image details can lead to earlier and more accurate 
diagnoses, especially when diseases have subtle imaging signs. Howev
er, there’s always the challenge of potentially introducing artifacts, 
which can mislead clinicians [196]. Consistency in super-resolution 
performance across various scenarios is pivotal to ensuring trustwor
thiness in clinical practice [197]. 

3.8.1.1. The interplay between techniques and disease diagnosis. Medical 
image super-resolution is not a one-size-fits-all approach. Depending on 
the disease or clinical requirement, the choice of the SR technique be
comes vital. For instance, while GAN-based super-resolution might be 
exceptional for visual enhancement in oncology imaging, such as the 
study by [162], the application of SR in neuroimaging might favor ar
chitectures like multiscale CNNs, as hinted by the study from [195]. 

3.8.1.2. Architecture design choices and their relevance. Architectural 
decisions are instrumental in determining the success of SR applications. 
For example, the choice by [141] to focus on up-sampling layers over 
down-sampling layers in their generative network showcases the need to 
prioritize comprehensive texture restoration, especially for MR images. 
In contrast, the multiscale CNN-based approach by [195] leverages 
wavelet analysis, showcasing the importance of local image processing 
capabilities, especially when the goal is to balance between image 
blurring and sharpening. Another aspect worth noting is the surge in 
transformer architectures like TransMRSR [111] in the realm of 
super-resolution. Their impressive performance metrics highlight the 
potential benefits of these architectures, like self-attention mechanisms, 
in capturing intricate image details. However, it is also essential to 
appreciate the computational implications of these choices. 

3.8.1.3. Impact of design choices on clinical applications. The real chal
lenge lies not just in the metric performance but in how these design 
choices translate to practical clinical settings. For instance, while the SR- 
ADC and EDSR approach using bicubic interpolation by [194] might 
showcase significant enhancement in diffusion coefficient images, it’s 
vital to understand its implications in diagnosing conditions like brain 
tumors or ischemic injuries. Similarly, the method by [52] that syner
gizes both local and global image features provides a holistic view, 
which can be especially valuable in a comprehensive clinical analysis, 
such as tumor staging. 

3.8.1.4. Beyond enhancement: risks and trade-offs. While many studies, 
like those by FAWDN [60] and SRDenseNet [70], show promising results 

in terms of PSNR and SSIM, there’s an inherent risk of over-optimizing 
for these metrics. In real-world applications, the balance between pre
serving structural details and achieving high resolution can be delicate. 
For instance, the disparity in the performance of FAWDN in different 
scales underlines this challenge. Similarly, while the study by [170] 
demonstrates significant enhancement in OCT images for AMD diag
nosis, real-world validation, especially in diverse patient populations, 
becomes critical. 

SR application in healthcare is multifaceted and highly influenced by 
the interplay of techniques, architectures, and design decisions. While 
the summarized performances offer a glimpse into the capabilities of 
various methods, a deeper analysis, as explored here, sheds light on the 
nuanced decisions and their broader implications. The ultimate goal 
remains clear: ensuring these technological advancements directly 
benefit patient care, diagnosis accuracy, and treatment efficacy. 

4. Metrics and dataset 

This section highlights topics such as: 
Significance of Quantitative Evaluation: The importance of evaluating 

SR methods, especially in the critical field of medical imaging. 
Metrics Overview: Brief intro to the diverse metrics used in SR, 

referencing Fig. 5. 
Need for Datasets: Emphasizing the dependence of medical image SR 

on high and low-resolution datasets. 
Evolution of the Field: Discuss how advancements in the field owe to 

computer vision breakthroughs and quality datasets. 
Common Datasets in SR: An introduction to datasets prevalent in the 

SR research, referencing Table 4 and Fig. 4. 
Introduction to Datasets: Understanding the importance of varied 

datasets in SR research. 
Understanding Metrics: An introduction to the diverse metrics 

employed for evaluating SR algorithms. 
SR methods, especially in medical imaging, must be quantitatively 

evaluated to ensure their effectiveness, reliability, and safety. This sec
tion explores the commonly used metrics (see Fig. 5) for assessing the 
performance of SR techniques and highlights standard datasets in the 
field. 

4.1. Datasets 

The field of medical image SR is reliant on high and low-resolution 
image datasets. Significant developments in this subject can be attrib
uted to improvements in computer vision and the availability of top- 
notch training datasets. This section presented medical image datasets 
and descriptions that are mostly used in SR research as shown in Table 4 
and Fig. 4. 

4.2. Standard datasets 

Super-resolution research has been significantly bolstered by the 
availability of robust and diverse datasets. Among these, the Set5 [140] 
and Set14 [200] datasets have gained traction for their concise collec
tion of images that span portraits to urban scenes. Similarly, the BSD100 
dataset [139], which originates from the broader BSD300, offers a rich 
array of images, making it a popular choice for benchmarking. 

For those researchers interested in intricate details and unique tex
tures, the Manga109 dataset [201] is unparalleled. Comprising 
high-resolution images from Japanese comic books or manga presents a 
unique challenge for super-resolution algorithms. Meanwhile, the 
DIV2K dataset [132], though relatively newer, has emerged as a staple 
in SR research with its vast collection of 1000 high-quality images. The 
Urban100 dataset [202], with its focus on urban scenes, brings forth the 
challenge of retaining intricate architectural and structural details in 
super-resolution tasks. When it comes to facial recognition or tasks 
specific to human faces, the CelebA dataset [203], brimming with over 
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200,000 celebrity images, has been the go-to choose for many. 
For researchers exploring video super-resolution, the Vid4 dataset 

[204] with its varied motion patterns serves as an excellent resource. 
Additionally, while the COCO dataset [205] was primarily designed for 
various other computer vision tasks, its extensive collection of labeled 
images across 80 categories has seen it being adapted for 
super-resolution tasks by subsets. 

Incorporating insights from these standard super-resolution datasets 
can provide valuable perspective and benchmarking standards for 
medical image super-resolution research. It’s vital to acknowledge the 
foundational role these datasets have played in the evolution of super- 
resolution models, as they offer a rich tapestry of challenges and sce
narios, driving models to achieve excellence [206]. 

4.3. Calculation metrics in medical SR 

Various metrics are used to evaluate the performance of super- 
resolution algorithms. Here in our study, we presented some 
commonly used ones. 

The PSNR is frequently used to assess image quality. This is partic
ularly based on the context of SR reconstruction and denoising. The 
PSNR is calculated as follows: 

PSNR = 10 ∗ log10

(
(2n − 1)2

MSE

)

(1) 

Here, the mean squared error (MSE) is a loss function. When the 
PSNR is higher, the MSE decreases, and the SR result is closer to the 
actual data. Therefore, the quality of the reconstructed images is 

Table 4 
The brief description of popular medical image datasets for SR.  

Dataset 
Name 

Brief description Image 
Type 

Default task Created 
Year 

COVID-CT 
[134] 

The publicly 
available dataset 
COVID-CT includes 
463 non-COVID-19 
CTs in addition to 
349 COVID-19 CT 
pictures from 216 
patients. 

CT COVID-19 
diagnosis models 
based on AI 

2020 

PROSTATEx 
[133] 

The SPIE-AAPM- 
NCI Prostate MR 
Classification 
Challenge, also 
known as the 
PROSTATEx 
Challenge, was 
organized in 
connection with the 
2017 SPIE Medical 
Imaging 
Symposium and 
focused on 
quantitative image 
analysis techniques 
for the diagnostic 
classification of 
clinically relevant 
prostate 
malignancies. 

MRI For prostate cancer 
diagnosis 

2017 

OASIS-brain 
[150] 

The Open Access 
Series of Imaging 
Studies (OASIS), 
which aims to make 
neuroimaging 
datasets freely 
accessible to the 
scientific 
community, 
recently released 
OASIS-3 and OASIS- 
4. 

MRI Clinically 
diagnosed with 
very mild to 
moderate 
Alzheimer’s 
disease. 

2007 

ADNI [174] The Alzheimer’s 
Disease 
Neuroimaging 
Initiative (ADNI) 
seeks to enhance 
clinical trials for 
Alzheimer’s disease 
prevention and 
therapy (AD). In 
order to investigate 
patients with AD, a 
dataset integrates 
knowledge and 
resources from the 
public and 
commercial sectors. 

MRI The ADNI 
Alzheimer’s 
Disease diagnosis 
has had an 
international 
influence in two 
ways: first, by 
creating a set of 
defined protocols 
that enable the 
comparison of 
results from various 
centers; and 
second, by 
adopting a data- 
sharing policy that 
makes all of the 
data openly 
available to 
qualified 
researchers 
throughout the 
world 

2004 

IXI [164] Nearly 600 MR 
images of healthy, 
normal patients 
make up the IXI 
Dataset. Each 
subject’s MR image 
acquisition protocol 
includes diffusion- 
weighted images, 
MRA images, T1, 

MRI Brain disease 
diagnosing. 
Utilizing 1.5T and 
3T scanners, the 
data was gathered 
at three different 
hospitals in London 

2010  

Table 4 (continued ) 

Dataset 
Name 

Brief description Image 
Type 

Default task Created 
Year 

T2, and PD- 
weighted images 
with 15 directions. 

LSMRI [198] This data collection 
includes 515 
patients with 
symptomatic back 
pain and their 
anonymized clinical 
MRI study, or series 
of scans. There may 
be one or more MRI 
studies connected 
to each patient’s 
data. 

MRI Spine disease 
diagnosing. Our 
dataset consists of 
48,345 MRI slices 
in total. The 
majority of the 
slices have a 320 ×
320 pixel image 
resolution, 
although there are 
slices from three 
investigations that 
have a 320 × 310 
pixel resolution. 

2019 

MRNet [199] The 1,370 knee MRI 
tests conducted at 
Stanford University 
Medical Center 
make up the MRNet 
dataset. 1,104 
abnormal exams the 
total were found in 
the sample, with 
319 ACL tears, and 
508 meniscal tears. 
The 1,370 knee MRI 
tests conducted at 
Stanford University 
Medical Center 
make up the MRNet 
dataset. 1,104 
abnormal exams the 
total were found in 
the sample, with 
319 ACL tears, and 
508 meniscal. 

MRI Acute and chronic 
pain, follow-up or 
preoperative 
evaluation, and 
injury/trauma 
were the most 
frequent reasons 
for knee MRI exams 
in this dataset. 

2012  
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enhanced by decreasing the loss function. 
The quantitative evaluation metric described below is information 

entropy (IE), which does not require a reference HR image, and mea
sures the amount of information present in an image. To determine 
whether the features are adequately maintained during the reconstruc
tion process, the IE of a reconstructed image is measured. The IE is 
calculated as follows: 

IE = −
∑L− 1

i=0
p(i)log2p(i) (2)  

where L is the dynamic range of the intensity values, and p(i) indicates 
the likelihood that each pixel has a signal intensity of i. The more in
formation an image includes, the higher the image quality and the larger 

the IE. 
The SSIM is the final criterion. According to the SSIM, the observed 

changes in structural information are regarded as image deterioration. 
The similarity between the two images is determined by comparing the 
SR image with the ground truth. An ideal correspondence between the 
two images is indicated by a mean SSIM value close to unity. The SSIM is 
calculated as follows: 

SSIM(x, y) =
(
2μxμy + C1

)(
2σxσy + C2

)

(μx
2 + μy

2 + C1)(σx
2 + σy

2 + C2)
(3)  

where x and y refer to the average signal intensities in the original image 
and the reconstruction, respectively. The standard deviations of the 
associated images are represented by x and y, where k1 = 0.01, k2 =

Fig. 4. Medical image SR datasets.  

Fig. 5. Overview of commonly using metrics in medical image processing.  
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0.03, and L is the dynamic range of the pixel values C1 = (k1L)2 and C2 =

(k2L)2 Wang et al. (2004). According to this concept, a high SSIM value 
denotes a high degree of image integrity and vice-versa. 

Normalized Root Mean Square Error (NRMSE) is a frequently used 
measure that enables the comparison of errors between different tests. It 
is calculated as the root mean square error normalized by the range of 
values: 

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n
i=1(yi − ŷi)

2
√

ymax − ymin
(4)  

where n is the total number of samples. yi is the actual value for the ith 

sample. ŷi is the predicted value for the ith sample. ymax is the maximum 
observed value. ymin is the minimum observed value. 

Quality Factor (QF) takes into account both the error (difference 
between the reconstructed and original image) and the smoothness of 
the reconstructed image: 

QF = α x PSNR + (1 − α) x S (5) 

Where PSNR is the Peak Signal-to-Noise Ratio of the image, S is a 
measure of the smoothness of the image. α is a weighting factor that 
balances the two metrics. 

Feature Similarity (FSIM) considers two main features when 
comparing two images: phase congruency, which is a natural image 
feature that captures the structural information of the image, and 
gradient magnitude, which represents the contrast information: 

FSIM =
1
N
∑N

i=1
[Sl(xi, yi) ∗ Sc(xi, yi) ∗ Ss(xi, yi)] (6) 

In this equation, N is the total number of pixels, xi and yi are the 
corresponding pixels in the two images being compared, Sl is the lumi
nance similarity measure, Sc is the contrast similarity measure, Ss is the 
structural similarity measure. 

Universal Quality Index (UQI) is a quantitative measurement that 
calculates the similarity between the reference image and the processed 
image. The best value is 1 and the worst value is − 1: 

UQI(x, y) =
4σxyμxμy(

σ2
x + σ2

y

)(
μ2

x + μ2
y

) (7)  

where x and y are the images being compared, µx and µy are the mean 
intensities of images x and y, respectively. σ2

x and σ2
y are the variances of 

images x and y, respectively, σxy is the covariance of x and y. The UQI 
value falls in the range [− 1, 1], with 1 indicating a perfect match be
tween the images. 

Mutual Information (MI) is an excellent method for medical image 
alignment because it provides a robust measure of image similarity, 
capable of handling intensity variations and changes in image content: 

MI(X, Y) =
∑

y∈Y

∑

x∈X
p(x, y)log

(
p(x, y)

p(x)p(y)

)

(8)  

here X and Y are the pixel intensities in the two images being compared, 
p(x, y) is the joint probability distribution function of X and Y. p(x) and p 
(y) are the marginal probability distribution functions of X and Y, 
respectively. 

Mean Absolute Error (MAE) computes the average absolute differ
ence between corresponding pixels in the original and super-resolved 
medical images. The MAE provides a measure of the average discrep
ancy between the pixel values of the two images. A lower MAE indicates 
better image similarity and higher quality: 

MAE =
1
N
∑N

i=1
|xi − yi| (9)  

where N is the total number of pixels in the images being compared, xi 
and yi are the pixel values of the original and super-resolved images at 
position i, respectively. 

Root Mean Square Error (RMSE) calculates the square root of the 
average squared differences between corresponding pixels in the orig
inal and super-resolved images. RMSE calculates the square root of the 
average squared differences between corresponding pixel values in the 
original and super-resolved images. It provides a measure of the overall 
discrepancy between the images: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(xi − yi)

2

√
√
√
√ (10)  

where N is the total number of pixels in the images being compared, xi 
represents the pixel value of the original image at position i and yi 
represents the pixel value of the super-resolved image at position i. 

Mean Structural Similarity Index (MSSIM) is an extension of SSIM 
that calculates the structural similarity index across multiple windows in 
an image, providing a global assessment. MSSIM calculates the average 
Structural Similarity Index across multiple windows or regions in the 
images, providing a global assessment of image quality based on struc
tural similarities: 

MSSIM =
1
N
∑N

i=1
SSIM(xi, yi) (11)  

here N is the total number of windows or regions in the images being 
compared, xi represents a window or region in the original image at 
position i and yi represents the corresponding window or region in the 
super-resolved image at position i. 

Peak Absolute Error (PAE) measures the maximum absolute pixel 
difference between the original and super-resolved images. PAE calcu
lates the maximum absolute difference between corresponding pixel 
values in the original and super-resolved images, providing a measure of 
the most significant discrepancy between the two images: 

PAE =
max

i |xi − yi| (12)  

where i represents the pixel position in the images being compared, xi 
represents the pixel value of the original image at position i, and yi 
represents the pixel value of the super-resolved image at position i. 

Normalized Cross-Correlation (NCC) measures the similarity be
tween the super-resolved and original images using cross-correlation, 
accommodating brightness variations. NCC computes the normalized 
cross-correlation between corresponding pixel values in the original and 
super-resolved images. It measures the similarity between the two im
ages while accommodating variations in brightness: 

NCC =

∑N
i=1(xi − x)(yi − y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(xi − x)2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N
i=1(yi − y)2

√ (13)  

N is the total number of pixels in the images being compared, xi repre
sents the pixel value of the original image at position i, and yi represents 
the pixel value of the super-resolved image at position i. 

5. Advancements in disease prognostication leveraging medical 
super-resolution 

This section highlights topics such as: 
Redefining Physical Imaging: The growth of SR in studying cellular 

structures at nanoscale levels. 
Techniques and Achievements: Prominent advancements in SR mi

croscopy, focusing on structured illumination microscopy and multi
scale deep learning. 

Future Avenues and Challenges: The hurdles ahead and the ongoing 
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research towards better integration and model efficiency. 
SR and Early Cancer Detection: The profound impact of SR techniques 

on early cancer diagnosis. 
Technological Strides: Various studies and methodologies, such as 

GANs for lung cancer CT images, MR signal motion compensation, and 
multi-network methods for breast cancer detection. 

Challenges and Future Outlook: The challenges impeding the adoption 
of SR in cancer research and the potential areas for growth. 

Revolutionizing Lung Disease Diagnosis: The role of SR in enhancing the 
detection process of pulmonary nodules. 

Technical Advancements: Studies and techniques dedicated to SR 
enhancement for respiratory conditions, including COVID-19 detection 
and pulmonology disease visualization. 

Opportunities and Limitations: The potential of SR in disease pro
gression tracking and the barriers to its widespread clinical usage. 

Advancing Neurological Imaging: The importance of non-invasive 
techniques and SR’s promise in the field. 

Technological Innovations: Key advancements in SR applications for 
brain anomalies, Alzheimer’s disease detection, and other neurovascular 
conditions. 

Emerging Trends and Prospects: An overview of the latest SR meth
odologies in brain imaging and the potential of these techniques in the 
future. 

In this section, we outline recent advances in SR towards various 
healthcare applications such as cancer, brain, and lung disease imaging. 
The SR of medical images is a significant area of image analysis. Many 
computer-vision applications have used image SR techniques exten
sively. The success of deep learning techniques in image SR has drawn 
the focus of an increasing number of researchers in recent years. In terms 
of network architecture, network structure, and training techniques, this 
paper provides a brief overview of the impact of recent deep-learning- 
based approaches to the medical imaging of diseases. An overview of 
the recent advances in SR is shown in Fig. 6. 

5.1. SR insights into cellular processes 

SR techniques have made remarkable strides in physical imaging, 
significantly impacting the accuracy and speed of diagnostic processes. 

They have become indispensable tools for studying cellular structures 
and dynamics at the nanoscale level. In the realm of SR microscopy 
image analysis, significant advancements have been made, promising 
more detailed visualizations from LR images, as demonstrated by [207]. 
Structured illumination microscopy image SR, developed by [208] using 
a deep Fourier channel attention network, has led to substantial im
provements in content and image reconstruction, particularly for images 
with low signal-to-noise ratios. Furthermore, a multiscale deep 
learning-based CNN method, as presented by [166], has achieved suc
cess in enhancing the resolution of LR microscopic images. They employ 
a residual learning scheme to discern differences between paired images 
and effectively insert lost details from an LR image into an HR image. 
While significant advancements have been made in SR methods, chal
lenges persist. These include the requirement for extensive training data 
and the risk of overfitting. Addressing these challenges is an ongoing 
focus of research, with efforts aimed at developing more efficient models 
and techniques. Furthermore, the integration of SR methods with other 
imaging techniques, such as electron microscopy and fluorescence mi
croscopy, holds the potential to offer a comprehensive view of cellular 
processes. 

5.2. Advancements in cancer detection 

Recent advances in SR techniques have created new opportunities for 
improving the diagnosis and treatment of cancer. HR images obtained 
through SR can significantly enhance the early detection and diagnosis 
of cancer. These techniques also improve treatment planning by 
providing higher-resolution images, allowing for precise delineation of 
tumor boundaries. This is particularly crucial in radiotherapy planning, 
where accurate targeting is essential. SR-enhanced imaging supports the 
monitoring of tumor progression or regression during and after treat
ment. This capability enables more timely adjustments to treatment 
plans, ultimately leading to improved patient outcomes. [157] focused 
on SR of lung cancer CT images using GAN methodology. They inte
grated spatial pyramid pooling and a GAN model for patch-focused 
training. [142] proposed SR for lung cancer disease detection, recon
structing images based on MR signal motion compensation and 
golden-angle radial acquisition. MR slices were encoded into a 

Fig. 6. Overview of SR methods for the special disease.  
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golden-angle radial trajectory and features using motion-encoded 
k-space. [209] applied image SR to breast cancer ultrasound. Their 
approach consists of two main networks: feature extraction and 
upsampling. To obtain deep multi-scale features, the feature extraction 
network employs skip connections. Extracted features are then passed to 
the sub-pixel convolution layer for upsampling, achieving HR output 
through a shuffling operation with a multi-dimensional kernel. An SR 
approach was introduced for the reconstruction of skin cancer images by 
[168]. They employed GAN in combination with cascade ensemble 
methods. Their method aims to capture more detailed features by uti
lizing aggregated residual transformation blocks within the network. 
Additionally, they incorporated a GMSD-based loss function to assess 
the accuracy of the generated image. In another context, [210] 
addressed the issue of decreasing resolution in medical image lesion 
diagnosis. They proposed SR multiscale networks that leverage both 
global and local features for the reconstruction process. [170] proposed 
an SR approach for breast histopathology cancer images. In this 
approach, the author extracted focused features, and the upsampling 
process involved the use of a generative model with a self-attention layer 
and widening residual blocks. To address the challenge of SR in cervical 
cancer screening and reduce processing time, [102] introduced a new 
pathology GAN-based progressive multi-supervised SR model. In their 
work, the authors presented a multi-supervised super-resolution model 
based on a two-stage generator, where the first stage is built upon the 
U-Net model. 

While SR techniques hold great promise in cancer research, they also 
come with several challenges and limitations. These encompass the risk 
of introducing artificial details, the substantial demand for extensive 
training data, the computational complexity of the algorithms, and the 
difficulty in validation due to the scarcity of ground truth high- 
resolution images. Future research efforts should be directed toward 
developing more robust and efficient SR algorithms tailored to the nu
ances of cancer imaging. Moreover, the integration of multi-modal 
medical imaging data holds the potential for enhancing the accuracy 
and utility of SR techniques in oncology, extending beyond image 
enhancement to areas such as surgical planning and personalized med
icine. Furthermore, it is essential to address ethical and regulatory 
considerations related to the application of these techniques in clinical 
practice. This includes ensuring patient privacy, data security, and 
compliance with healthcare regulations. 

5.3. Respiratory disorder prognostication 

Medical imaging plays a pivotal role in diagnosing and managing 
lung diseases. In recent years, the quality of these images has seen 
remarkable improvement thanks to the application of super-resolution 
techniques, increasingly driven by deep learning methodologies. 
Particularly noteworthy is the impact on the detection of pulmonary 
nodules, a crucial factor in early lung cancer diagnosis. SR techniques 
have significantly enhanced the accuracy of this process. Recent studies 
have illustrated the effectiveness of SR-enhanced CT scans in detecting 
even the smallest nodules, enabling early and more precise diagnoses. 

To enhance the accuracy of COVID-19 detection from images, [88] 
employed SR techniques, utilizing a double-path approach to capture 
both low- and high-frequency features. Their method incorporates 
multiple residual information distillation steps to obtain high-frequency 
features, facilitating the recovery of HR images. 

In another study, [89] presented an SR module for CT-based 
COVID-19 images. Their design incorporates two residual blocks and 
an attention module to extract deep features, which are then progres
sively upsampled to reconstruct the HR output at different scale factors. 
Additionally, SR techniques were applied to CT lung images for 
early-stage pulmonary nodule detection by [211]. The authors intro
duced a generative model featuring functional semantic graph con
struction that employs tree-based instructions to generate HR images. 

Chest X-ray image SR, as demonstrated by [138], utilizes conditional 

GANs with spectral normalization. This approach has been instrumental 
in the classification of pulmonological diseases, as GANs enable precise 
reconstruction while preserving pathological invariance. In [212], a 
method for chest X-ray lesion image SR reconstruction is introduced. 
This method is based on a recursive neural network, addressing concerns 
related to poor detail extraction and lengthy training times in SR 
reconstruction processes. Furthermore, [116] presented SR for pulmo
nology disease detection using chest images. Their approach relies on a 
lightweight wavelet frequency separation attention network. A dedi
cated wavelet network is designed with a specific path for approxi
mating wavelet subband frequencies to predict wavelet coefficients. 

The integration of SR techniques into lung disease diagnosis holds 
promise for enhancing both detection and disease progression tracking. 
However, the widespread clinical adoption of these techniques remains 
limited due to factors such as computational costs and the necessity for 
extensive validation. In the realm of neurodegenerative diseases, such as 
Alzheimer’s and Parkinson’s, SR techniques have played a pivotal role. 
They have significantly improved the resolution of MRI images, thereby 
enhancing the visualization of brain structures and contributing to early 
diagnosis efforts. 

5.4. Unveiling neurovascular complexities: super-resolution in brain and 
vessel disease detection 

The increasing prevalence of non-invasive imaging techniques for 
detecting and monitoring neurological and vascular diseases has spurred 
the need for the development of advanced image-processing algorithms. 
SR methods, with their capacity to deliver improved image resolution 
and clarity, hold promising capabilities in these domains. 

In the detection and analysis of brain anomalies using vessel images, 
[144] employed paired MRI LR and HR images, introducing applications 
for reconstruction and upsampling. These applications utilizing SR im
ages exhibit higher accuracy compared to those obtained from inter
polated images, making them strong candidates for clinical research. 
Additionally, [148] presented an SR-GAN application for brain MRI 
images, particularly in the context of Alzheimer’s disease detection. 
Their proposed method is trained using two techniques: the training 
process is augmented by increasing the dataset size through stochastic 
patch sampling, and artifacts are mitigated using two input HR images 
and the generated images 

In the context of Alzheimer’s disease detection in brain images, 
[135] introduced another SR method based on paired prior information 
to obtain HR output images. For arbitrary-scale SR of brain MRI images, 
[124] proposed a generative model incorporating coupled 
meta-learning, effectively reducing the number of model parameters 
compared to existing methods. [213] presented an SR method for 
augmentation using GANs, generating synthetic images to expand the 
training dataset. In another approach, [70] employed a DenseNet ar
chitecture to pair noisy LR and HR images for SR MR brain image 
reconstruction. 

The application of SR techniques to medical images, particularly in 
the context of brain and vascular diseases, has yielded significant en
hancements in image resolution and clarity. These improvements have, 
in turn, advanced diagnostic and treatment capabilities in these critical 
domains. As AI and machine learning technologies continue to evolve, 
we anticipate even greater gains in the accuracy and efficiency of these 
techniques. 

6. Challenges 

This section highlights topics such as: 
SR Insights into Cellular Processes 
The role of SR in physical imaging. 
Advancements in SR microscopy image analysis. 
Challenges and future potential. 
Advancements in Cancer Detection 
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The importance of HR images in early cancer detection and 
treatment. 

Notable methodologies are applied in different types of cancer 
imaging. 

Limitations and future directions in cancer research. 
Respiratory Disorder Prognostication 
Role of SR in diagnosing and managing lung diseases. 
Techniques in enhancing COVID-19 detection. 
Application of SR techniques for early-stage pulmonary nodule 

detection. 
Unveiling Neurovascular Complexities: Super-Resolution in Brain 

and Vessel Disease Detection 
Significance of non-invasive imaging techniques. 
Role of SR in detecting brain anomalies and Alzheimer’s disease 

detection. 
Challenges: 
Challenges Associated with Stereo Imaging, applying SR Techniques 

to Ultrasound Imaging, obstacles in Adopting Unsupervised Super- 
Resolution for Clinical Imaging, Extremely Dense Imaging, CNN 
Models, Generative Models, Robustness to Noise and Artifacts, dealing 
with Motion, Transfer Learning Challenges, Multiscale SR. 

In this section, a detailed analysis of the challenges and unaddressed 
issues in SR is presented (see Fig. 7). This section sheds light on the 
prominent hurdles that the community faces in realizing the full po
tential of super-resolution methods in healthcare applications. 

6.1. Challenges associated with stereo imaging 

An understanding of medical imaging is essential for effective disease 
diagnosis. In healthcare applications, there has been a recent shift to
wards stereo imaging techniques, with notable examples including ste
reo endoscopy and stereomicroscope. Stereo imaging involves the 
creation of three-dimensional (3D) images by manipulating signals 
within a 180-degree stereo field. The introduction of stereo imaging has 
revolutionized the diagnostic process in healthcare. However, chal
lenges arise when the image disparity exceeds the receptive fields, 
leading to lower-quality images that require techniques like SR for 
enhancement. While recent advances in single-image SR and deep 
learning-based SR have made significant strides in medical imaging, 
they often face difficulties when applied to stereo imaging. The NTIRE, a 
standard baseline for single-image SR, has also underscored the chal
lenges of stereo-image SR. In response, a 2022 challenge was initiated to 

address the optimization of single-image SR methods for typical stereo 
images. 

6.2. Challenges in applying super-resolution techniques to ultrasound 
imaging 

A significant number of studies have leveraged ultrasound imaging 
for in vivo investigations of the human vascular system. SR techniques 
play a crucial role in enhancing the depth and detail of these images, 
surpassing the capabilities of other state-of-the-art methods. However, 
the application of SR in ultrasound imaging remains limited, with many 
potential applications yet to be explored. Notable examples of SR in 
ultrasound imaging include its use in oncology and neurology imaging 
by [49], kidney imaging by [214], and lower-limb imaging for diabetes 
analysis by [215]. However, SR in ultrasound imaging is still in its early 
stages, and various challenges remain unexplored. For instance, deter
mining the accuracy of a high-resolution output image is constrained by 
factors such as observed vessel characteristics, diameter, and velocim
etry after image reconstruction, as highlighted by [49]. Similarly, 
challenges related to insufficient information for microscopy localiza
tion, inaccuracies in velocimetry, and incomplete motion information 
are pressing issues within ultrasound imaging. While some studies, such 
as those conducted by [216], have examined the reconstruction of 3D 
images, the accurate acquisition of all channels remains challenging, 
making this a promising area for future SR research. 

6.3. Obstacles in adopting unsupervised super-resolution for clinical 
imaging 

One of the major obstacles in smart healthcare applications is the 
acquisition and labeling of data required for supervised machine 
learning. In the case of SR, the process demands a pairing of high- and 
low-resolution images to effectively estimate the quality of new images 
with a known downsampling rate. However, in many instances, imaging 
devices primarily produce low-resolution images. Hence, the need for 
unsupervised SR techniques becomes paramount in such scenarios. 
While there have been prior attempts to enhance the resolution of in
dividual images using unsupervised learning techniques, the application 
of these techniques to multiple images still lags significantly behind the 
current state-of-the-art approaches. For example, methods like zero- 
shot, as demonstrated by [217], work well when the image possesses 
sufficient depth for downsampling. However, for images that are 

Fig. 7. Overview of challenges in medical image SR.  
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inherently low-resolution to begin with, such techniques prove 
ineffective. 

6.4. Extremely dense imaging 

In medical imaging, image acquisition devices often capture images 
at a high density, aiming to capture fine details. For example, the pre
diction of breast cancer requires mammograms with extremely high- 
density images to examine each tissue closely. Current SR techniques 
typically operate with a maximum patch extraction size of 32 pixels ×
32 pixels, which is relatively limited in terms of available studies. 
Consequently, for scenarios like the aforementioned breast cancer pre
diction, a much higher SR rate is necessary, demanding further atten
tion. While notable studies have applied SR to high-density 
mammogram images ([187]; [64]), their approach to SR rate selection 
remains arbitrary, highlighting the need for standardization, as noted by 
these authors. Some noteworthy attempts (e.g., [218,219]) have 
explored higher SR rates to extract finer details in medical images. 
However, challenges such as accuracy and processing time remain sig
nificant hurdles to establishing a standard rate. For instance, in their 
work, [218] employed high-resolution 128-pixel × 128-pixel images for 
standard ultrasound localization. Nevertheless, the study highlighted 
challenges related to GPU acceleration and real-time optimization 
required to extract such minute details. 

6.5. CNN models 

Advanced CNN architectures, especially deep networks, require 
significant computational power. This demand is not only for training 
but also for inference, making it challenging to deploy in real-time ap
plications or on edge devices with limited computational resources 
[220]. CNN-based models focus on end-to-end mapping from 
low-resolution to high-resolution images, potentially overlooking the 
rich intermediate features that can be critical for image recovery. In
termediate features can provide a more detailed understanding of the 
underlying structures, which is crucial for medical images [221]. 

6.6. Generative models 

GANs, have ushered in a new era of capabilities within the realm of 
SR, particularly for medical imaging. The synergistic model architecture 
of GANs, involving a generator striving to upscale images and a 
discriminator evaluating the quality of the generated images, offers an 
innovative approach to the enhancement of image resolution. However, 
the deployment of GAN-based models for medical image SR has brought 
forth certain intricate challenges that become paramount given the 
delicate nature of medical imaging. 

One of the foremost issues that looms is that of mode collapse. This 
phenomenon sees the generator start to yield strikingly similar outputs 
for diverse inputs. In the context of medical imaging, the implications of 
such an occurrence could be detrimental. Overlooking critical details or 
anomalies in the upscaled images can lead to misdiagnoses, thereby 
affecting patient care. Training stability, or rather the lack thereof, 
further compounds the intricacies of using GANs [157]. Achieving a 
harmonious equilibrium in training GANs can often be a tumultuous 
journey, particularly when the loss functions are not meticulously 
defined or balanced. The fallout from such instability is the generator’s 
propensity to craft unrealistic images. Within the sensitive landscape of 
medical imaging, the generation of images that are not an accurate 
representation of the underlying anatomy can lead to diagnostic errors 
[222]. The risk of over-enhancement is another challenge that cannot be 
overlooked. The prowess of GANs in amplifying image details, while 
commendable, can sometimes be their Achilles’ heel. There exists a 
tangible risk where the model may overemphasize or exaggerate certain 
features that aren’t inherently present in the actual high-resolution 
image. Such over-enhancements can introduce artifacts or, even 

worse, paint benign structures as pathological, leading clinicians down 
an erroneous path [223]. 

6.7. Robustness to noise and artifacts 

Medical images can often contain noise or artifacts from the imaging 
process. SR methods should be robust to these to avoid amplifying or 
introducing new artifacts. Robustness to noise and artifacts is a pivotal 
challenge in medical image processing. Given the high stakes involved in 
medical decisions, it’s vital that algorithms can reliably interpret images 
even in the presence of such impediments. Simple and computationally 
efficient methods for SR can be beneficial for real-time applications due 
to their speed [224]. However, when trying to upscale images by sig
nificant factors, these methods can often introduce visual artifacts 
[225]. 

6.8. Dealing with motion 

Especially in modalities like MRI, CT, and ultrasound images, motion 
that comes due to patient movement, cardiac activity, or respiration can 
introduce inconsistencies in images [226]. SR techniques need to ac
count for and correct these inconsistencies. Iterative optimization al
gorithms often face challenges, especially in high-dimensional spaces 
such as those encountered in medical imaging [227]. 

6.9. Transfer learning challenges 

The application of transfer learning to medical image super- 
resolution offers an enticing avenue, capitalizing on the rich feature 
representation learned from large and diverse datasets like ImageNet. 
However, its implementation in the realm of medical imaging isn’t 
devoid of challenges. One of the most pronounced challenges is the 
domain gap. The inherent nature of medical images diverges signifi
cantly from that of natural images. Medical images, whether they are 
MRIs, CT scans, or X-rays, capture unique underlying physiological 
phenomena. These images might present various contrasts, modalities, 
and structures that are atypical in natural images. Consequently, a 
model pre-trained on natural images might find it initially challenging to 
grapple with the distinct properties of medical imagery. Compounding 
the issue is the data distribution mismatch. The pixel value distributions, 
contrasts, and intricate features of medical images can vary vastly from 
natural images. Thus, ensuring that the early layers of a pre-trained 
model remain pertinent and beneficial for the medical super- 
resolution task becomes a critical aspect. However, with medical data
sets often being limited in size due to privacy concerns and data 
acquisition constraints, the risk of overfitting looms large. This limited 
data availability leads us to another conundrum of fine-tuning diffi
culties. When only a limited set of high-resolution medical images is 
accessible, the question arises: Which layers of the model should be fine- 
tuned, and which ones should be frozen? An incorrect decision here can 
lead to the model memorizing the training data, rather than genuinely 
learning the nuances of medical image SR [216]. 

Additionally, there’s the issue of model complexity and computa
tional overhead. Models pre-trained on extensive datasets like ImageNet 
[228] are often characterized by their depth and might entail substantial 
computational resources. In scenarios where such complexity is not 
warranted, employing these models can lead to unnecessary computa
tional costs and inefficiencies. Lastly, a pivotal concern is featuring 
relevance. While the initial layers of a pre-trained model capture generic 
features, their direct applicability to medical images remains question
able. It becomes essential to ascertain that these features don’t detract 
from the super-resolution task but rather augment it. 

6.10. Multiscale SR 

In the evolving landscape of medical imaging, the introduction and 
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subsequent adoption of multiscale models have marked a significant 
leap in the realm of SR. These models, by virtue of their design, attempt 
to assimilate information across different scales, thereby aiming to 
retrieve a synthesis of both the macroscopic and microscopic features 
inherent in medical images. Through this approach, the promise is a 
more nuanced and detailed super-resolved image that captures the in
tricacies of underlying anatomical structures. However, the marriage of 
multiscale modeling with medical image SR is not without its 
challenges. 

A primary concern arises from the very strength of multiscale mod
els—their ability to process varied scales of an image. While this is 
instrumental in capturing a diverse range of details, it also demands a 
comprehensive contextual understanding of the image. Medical images 
are not mere visual data they encapsulate a plethora of physiological and 
pathological information. Ensuring that features derived from various 
scales align coherently in the super-resolved image while maintaining 
their clinical relevance can be an arduous task [229]. Moreover, the 
juxtaposition of features from different scales introduces the potential 
for conflicts in the final super-resolved image. For instance, while 
enhancing the finer details, there is a risk of overshadowing or distorting 
broader structures that are equally vital for clinical interpretation. 
Achieving a harmonious balance between these scales without intro
ducing artifacts or inconsistencies remains a formidable challenge 
[229]. Furthermore, multiscale models often demand significant 
computational resources. The need to process and integrate information 
from multiple scales escalates the computational overhead. Given the 
urgency and real-time demands of many medical scenarios, such as 
surgeries or emergency diagnostics, the feasibility of deploying multi
scale SR models becomes a point of contention. 

Each of these challenges represents an opportunity for future 
research and development in the field of medical image super- 
resolution. By conscientiously highlighting these challenges and limi
tations, this survey underscores the importance of continual research, 
collaboration, and innovation in the domain. As we champion the strides 
made, we also emphasize the path ahead, marked by both promise and 
intricate challenges. 

6.11. Other research directions 

Apart from the above challenges, the current trend in the literature 
has led to the use of semi-supervised and reinforcement-learning-based 
methods to compensate for the requirement of massive sets of medical 
images. Reinforcement-based methods generally require much less data 
and are therefore not limited to the acquisition of massive medical data. 
However, the downside of such approaches is the optimization time of 
the policy, and in some situations, despite an appropriate design, the 
policy does not converge, which in turn makes these approaches unus
able. Some studies have been based on reinforcement learning to 
partially solve a process in SR, such as a blur kernel [59] and the se
lection of the best action from existing supervised models [230]. The 
positive side of both these approaches is lightheartedness and faster 
response compared to supervised approaches; however, they work on a 
partial process of SR, and thus involving a pure reinforcement learning 
solution is still a massive gap in the current form of state-of-the-art 
approaches. 

Another popular method that has received significant attention in 
recent years is the deconvolution technique for the SR of microscopic 
image data. The deconvolution works best for sparse data such as 
structured illumination microscopy and fluorescent microscopy. Similar 
to reinforcement learning, these methods are lightweight and fast [231]. 
Moreover, in contrast to deep learning-based content-dependent ap
proaches, deconvolution-based approaches are content-agnostic, which 
further avoids the limitation of the acquisition of high-resolution im
ages. However, deconvolution-based models require information about 
the prior image to model the SR image. The current state-of-the-art 
approaches have witnessed an application in microscopy and 

ultrasound imaging [232], where the information is sparse; however, if 
such faster techniques can be applied to highly dense medical images, 
such as mammograms, it would be a valuable addition to state-of-the-art 
techniques. The summary of the unaddressed challenges and research 
directions are mentioned in Table 5. 

While significant advancements have been made in medical image 
super-resolution, challenges remain. Future research should focus on 
developing more robust and interpretable SR models, incorporating 
domain-specific knowledge, and addressing the issues of noise and over- 
enhancement. In addition, the integration of these SR techniques into 
the clinical workflow will require careful validation to ensure the reli
ability and safety of the super-resolved images. 

7. Experimental analysis 

In this section we focused on experimental details of several state art 
methods in medical SR. We implemented this section-based IXI MRI 
brain dataset [164] for SR Table 6. This dataset includes a significant 
number of MRI scans from a diverse range of subjects, allowing for 
comprehensive testing of super-resolution algorithms, especially for 
enhancing the details in neuroimaging. We compared the performance 
of state-of-the-art SR methods based on two primary metrics: PSNR and 
SSIM. Both PSNR and SSIM give us insights into the quality of the 

Table 5 
Summary of the unaddressed problems and future directions.  

Challenges Medical images Application 
area 

Research direction 

Stereo Imaging Stereo endoscopy 
and 
stereomicroscope 

Endoscopy, 
Microscopy 

Improved 
Acquisition 
Techniques, 
Advanced 
Visualization Tools 

Ultrasound 
Imagining 

Vascular Data Oncology, 
Neurology, 
Kidney, 
Diabetes 

3D reconstruction 
Accurate 
velocimetry 
Incomplete Motion 

Unsupervised 
Learning 

general data tumor 
detection, 
cancer 
detection 

Multiple image 
unsupervised 
learning 

Extremely 
Dense 

Ultrasound data, 
Mammogram 

Breast cancer 
prediction, 
Tumour 
prediction 

Real-time 
optimization, 
Higher rates 
accuracy 

Reinforcement 
Learning 

Applied to all Blind super- 
resolution 

Time optimization, 
policy model, 
evaluation model 

Deconvolution Sparse Microscopic 
data, filament 
structure data, DNA 
imaging, Ultrasound 
data 

Fluorescence 
microscopy, 
structured 
illumination 
microscopy 

3D Resolution of 
microscopic data, 
Content-agnostic 
super resolution, 
Model of the prior 
for deconvolution 

CNN Applied to all Clinical 
healthcare 
based on AI 

AI based smart 
healthcare 

GAN Applied to all AI based image 
regenerator 

Reconstruction 
medical images, 
creating syntactic 
datasets 

Motion MRI/CT/Ultrasound Healthcare 
applications 

Image correction 

Transfer 
Learning 

Applied to all Architectural 
Innovations, 
Domain 
Adaptation 

Enhancing Scans, 
Data 
Augmentation, 
Fine-tuning 

Multiscale SR Applied to all Enhanced 
Disease 
Diagnosis, 
Improved 
Treatment 
Planning 

Functional MRI, 
Diffusion Tensor 
Imaging, Structural 
Analysis  
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reconstructed high-resolution images in comparison to the original 
high-resolution images. For instance, models like FAWDN [60] and 
MHCA [63] exhibited higher PSNR values, hinting at better image detail 
restoration. However, performance variability was evident across 
different SR methods. While some models showed superior performance 
in terms of PSNR and SSIM, there’s a catch. High computational 
complexity, seen in models like FAWDN [60], might render them 
impractical for real-time applications. Moreover, despite their impres
sive metrics on the IXI dataset [164], some models may not generalize 
well to other datasets, underscoring the importance of multi-dataset 
validation. 

CFIPC [78] stands out for its performance in scale x2 with the highest 
PSNR of 46.81. However, when it comes to SSIM at the same scale, 
Med-SRNet [97] dominates with a remarkable score of 99.20. SRDen
seNet [70] also makes a strong appearance with competitive scores in 
both PSNR and SSIM. When examining the scale x4, TransMRSR [111] 
emerges as a frontrunner, demonstrating exceptional performance in 
both PSNR and SSIM. It’s worth noting how this model outperforms even 
the established benchmark, SRCNN, which offers a decent PSNR of 
36.20 and SSIM of 81.43 for scale x2 but sees a performance drop at 
scale x4. Several models surpass SRCNN’s performance, underlining the 
rapid advancements in medical image super-resolution techniques. 
Among them, CFIPC [78] and SRDenseNet [70] exhibit particularly 
strong performances, which highlight the efficacy of their underlying 
architectures. Interestingly, recent transformer architectures, specif
ically tailored for image processing, are making a mark in the 
super-resolution domain. SwinIR[104], T-GAN [109], TransMRSR 
[107], and SIFormer are prime examples. In particular, TransMRSR 
[107] leads the pack, excelling in both PSNR and SSIM metrics. 
Furthermore, FAWDN offers a fascinating case. While it boasts an 
impressive SSIM at scale x2, its PSNR at scale x4 is comparatively lower. 
This disparity underscores the challenges in striking a balance between 
preserving structural similarities and achieving a high peak 
signal-to-noise ratio. On the topic of specialized models, STAN, which 
synergizes the capabilities of the Swin transformer with attention 
mechanisms, yields commendable results specifically for CT imaging. 

Additionally, models like WFSAN [116] and AID-SRGAN [113] adopt 
distinctive approaches, focusing on specific types of medical imaging 
such as chest X-rays and radiographs. A higher SSIM value indicates that 
a method preserves structural details better, which is of paramount 
importance in medical imaging. Though high PSNR values signify good 
image quality, in a practical medical setting, a high SSIM could be more 
indicative of the model’s usefulness. Beyond metrics, the clinical vali
dation of these techniques is paramount. What medical practitioners, 
such as radiologists, perceive these enhanced images and their subse
quent impact on diagnosis or treatment decisions should be a core 
evaluation criterion. In the pursuit of enhancing resolution, there’s a 
potential pitfall: some methods could introduce artifacts or distort spe
cific features, which can be counterproductive in medical diagnostics. 

The field of medical image super-resolution is witnessing rapid ad
vancements with various architectures, ranging from convolutional 
networks to transformers, all striving to achieve better clarity and pre
cision in medical images. 

8. Discussion 

This comprehensive survey aimed to provide an extensive overview 
of the current state-of-the-art deep learning-based models for medical 
image super-resolution, with a particular focus on their application in 
smart healthcare. We reviewed various models, including SRCNN, DRN, 
GAN-based models, attention-based models, and RNN-based models, 
and discussed their strengths and limitations. Additionally, we high
lighted several challenges and unaddressed issues in the field, such as 
noise handling, integration with other imaging modalities, maintaining 
clinical features, clinical validation, and hardware constraints. 

Our review revealed that deep learning-based models, particularly 
those based on GANs and attention mechanisms, have shown significant 
promise in enhancing the resolution of medical images, outperforming 
traditional interpolation methods. These models have been successfully 
applied to various types of medical images, including MRI, CT, X-ray, 
and ultrasound scans, and have the potential to revolutionize the diag
nostic process by enabling more precise clinical diagnoses and 
interventions. 

However, we also identified several critical challenges that need to 
be addressed to facilitate the widespread adoption of these techniques in 
clinical practice. Firstly, developing models that can handle different 
types of noise and produce clean, high-resolution images is a significant 
challenge. Secondly, integrating these models with different imaging 
modalities and ensuring that they maintain all clinically relevant details 
is crucial. Thirdly, these models need to be clinically validated to ensure 
their reliability and safety. Lastly, navigating the regulatory landscape 
and obtaining the necessary approvals for clinical use is a complex and 
time-consuming process. 

Additionally, we noted that there is a lack of standardization in the 
selection of super-resolution rates, and the accuracy and time con
sumption of higher rate extractions are still challenges toward the 
realization of a standard rate. The integration of super-resolution tech
niques into the clinical workflow will require careful validation to 
ensure the reliability and safety of the super-resolved images. Moreover, 
the optimization time of the policy in reinforcement learning-based 
methods and the requirement of prior image information in 
deconvolution-based models are notable limitations that need to be 
addressed. While semi-supervised and reinforcement learning-based 
methods have been proposed to compensate for the requirement of 
massive sets of medical images, these approaches have their own set of 
challenges, such as the optimization time of the policy and the non- 
convergence of the policy in some situations. Additionally, the appli
cation of faster techniques like deconvolution to highly dense medical 
images, such as mammograms, remains an unexplored area that war
rants further investigation. 

Table 6 
Experimental analysis of state art models of medical image SR.  

Model Scale PSNR SSIM Scale PSNR SSIM 

SRCNN [233] x2 36.20 81.43 x4 28.42 78.28 
FAWDN [60] 43.30 98.50 33.23 90.36 
PFMDN [59] 35.84 91.87 29.63 87.28 
MHCA [63] 45.20 96.50 32.65 94.86 
W-SRCNN [65] 25.62 89.62 19.99 76.84 
SRDenseNet [70] 45.68 98.70 36.20 92.32 
CFIPC [78] 46.81 95.21 38.42 91.02 
MRDN [79] 37.80 96.60 31.69 88.86 
MIRN [81] 32.64 92.12 29.21 88.62 
DURN [61] 31.99 92.00 28.45 78.99 
RRLSRN [87] 38.67 98.52 31.25 88.92 
DRIDSR [88] 36.99 91.99 31.89 83.54 
Multimodal-Boost [89] 37.52 93.58 30.27 89.34 
SRGAN [234] 28.49 81.85 30.68 86.89 
GAN-MSR [92] 38.85 94.17 32.42 89.53 
GAN–CIRCLE [96] 28.69 79.63 32.25 89.12 
Med-SRNet [97] 45.89 99.20 33.84 89.87 
FP-GANs [105] 28.23 91.99 26.32 89.85 
SwinIR [108] 36.56 90.84 34.99 85.48 
T-GAN [109] 35.12 94.26 31.28 90.51 
TransMRSR [111] 43.68 97.61 36.37 98.50 
SIFormer [112] 39.74 95.22 33.50 97.99 
AID-SRGAN [113] 33.28 94.00 30.52 89.65 
WFSAN [116] 35.62 93.26 29.85 89.27 
GAMA [117] 43.05 98.56 32.89 90.52 
RDAN [118] 36.16 94.28 31.48 85.62 
STAN [119] 35.21 94.89 31.24 84.99 
MSBFAN [120] 33.56 90.99 30.42 91.89      

DisC-Dif [180] 37.61 98.52 31.42 95.99  
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9. Future directions 

The potential pathways for advancement in the field of medical 
image super-resolution are numerous and exciting. The continuous 
progress in deep learning algorithms and increasing computational ca
pabilities suggest that super-resolution models will soon become indis
pensable tools in the diagnostic and treatment planning arsenal. These 
models hold the promise of drastically enhancing the quality of medical 
images, thereby facilitating more accurate diagnoses and more precise 
interventions. Additionally, the capacity to generate high-resolution 
images from existing low-resolution ones could minimize the necessity 
for additional scans, consequently reducing radiation exposure and 
enhancing patient comfort. Furthermore, as the availability of data ex
pands and models become more sophisticated, it is anticipated that 
super-resolution models will be equipped to manage a broader range of 
imaging modalities and clinical applications. This will pave the way for 
the creation of personalized and patient-specific models that can deliver 
more precise and clinically pertinent outcomes. 

9.1. Tackling specific challenges in medical image super-resolution 

As we stand on the cusp of advancements in medical image super- 
resolution, certain pressing challenges demand our attention. The road 
to an optimized future in this field may seem daunting, but with 
meticulous strategies, it is achievable [19]. 

Data scarcity and diversity have long plagued the realm of medical 
imaging. The efficacy of deep learning models hinges on vast and varied 
datasets, but acquiring such data sets, especially high-resolution ones, 
remains an uphill task in medical domains [206]. To circumvent this, the 
use of synthetic datasets and data augmentation techniques appears 
promising. By deploying generative models to simulate medical images, 
we can amass a larger pool for model training. Additionally, the realm of 
transfer learning offers potential avenues [216]. Here, models that have 
been trained on expansive natural image datasets can be fine-tuned with 
the limited medical data available, facilitating better performance 
without the need for massive medical datasets [56]. 

Another challenge that emerges is model generalization across 
different imaging modalities. There is a lingering concern that models 
trained on a specific modality, such as MRI, might falter when presented 
with another, like CT scans [40]. A future direction to ensure robustness 
across modalities is to focus on creating modality-agnostic architectures. 
A strategy worth exploring is multi-task learning, where models are 
trained across multiple imaging types. This simultaneous training can 
equip the model to identify shared features and intricacies across various 
modalities, ensuring consistent performance. 

Computational overhead is a concern, especially when real-time 
applications are considered. Surgeries and immediate diagnostics de
mand swift super-resolution without image quality being compromised 
[15]. This necessitates the exploration of lightweight model architec
tures, with mobile-optimized neural networks being a prime candidate. 
Moreover, hardware accelerators, including FPGAs and custom ASICs 
tailored for super-resolution tasks, might hold the key to facilitating 
real-time processing without delays. 

The medical community becomes increasingly reliant on AI- 
augmented images, and the interpretability of models is paramount. 
Clinicians need to understand the underlying decision-making processes 
of these models to trust their outputs fully. To this end, integrating 
techniques like attention mechanisms can be instrumental. These 
mechanisms can illuminate regions in the image crucial for the super- 
resolution process, offering clinicians insights into what the model 
perceives as important. Training models to generate explanations 
alongside super-resolved images can further bridge the trust gap and 
facilitate more widespread adoption of these advanced technologies in 
clinical settings. 

10. Prospective 

The outlook for medical image super-resolution in the realm of smart 
healthcare applications is incredibly promising. Advances in deep 
learning and computational capabilities indicate that super-resolution 
models are on track to become a fundamental component of the diag
nostic and treatment planning process. These models are poised to 
substantially enhance the quality of medical images, thereby enabling 
more accurate diagnoses and more precise interventions. Additionally, 
the capability to generate high-resolution images from existing low- 
resolution ones could eliminate the need for additional scans, thereby 
reducing radiation exposure and improving patient comfort. 

Moreover, as the availability of data increases and models become 
more sophisticated, it is expected that super-resolution models will be 
capable of handling a wider range of imaging modalities and clinical 
applications. This will facilitate the development of personalized and 
patient-specific models that can provide more accurate and clinically 
relevant results. 

11. Recommendations 

In order to fully harness the potential of medical image super- 
resolution in smart healthcare applications, several key recommenda
tions about the critical need for standardization in the selection of super- 
resolution rates and the validation of models. This includes developing 
standardized datasets and evaluation metrics that can be used to 
objectively compare the performance of different models. Encouraging 
collaboration between researchers, clinicians, and industry partners is 
essential to accelerate the development and implementation of super- 
resolution models. This includes sharing of data, expertise, and re
sources. Furthermore, it is important to rigorously validate the models in 
real-world clinical settings to ensure their reliability and safety. This 
includes conducting clinical trials and studies to assess the impact of 
super-resolution models on diagnostic accuracy and patient outcomes. 

Additionally, efforts should be made to develop models that are 
computationally efficient and can be easily integrated into existing 
clinical workflows. This includes optimizing the models for different 
hardware platforms and developing user-friendly interfaces. 

Lastly, it is important to address the ethical and legal considerations 
associated with the use of super-resolution models, such as data privacy, 
informed consent, and liability. Developing clear guidelines and policies 
for the responsible use of these models is crucial to ensure their wide
spread adoption and success. The future of medical image super- 
resolution in smart healthcare applications looks incredibly bright. By 
addressing these key challenges and harnessing the power of deep 
learning and computational advances, we can develop models that 
significantly improve the quality of medical images, enhance diagnostic 
accuracy, and ultimately lead to better patient outcomes. 

12. Conclusion 

In the era of digital healthcare transformation, the need for high- 
resolution medical images is more pressing than ever. Deep learning 
models, in synergy with medical imaging, have the potential to redefine 
diagnostic accuracy and precision. Nonetheless, the challenge of 
creating clear, high-resolution images from low-quality outputs remains. 
Our analysis of contemporary techniques and state-of-the-art models 
offers insights into the current capabilities and limitations of super- 
resolution in medical imaging. While models like SRCNN, VDSR, and 
SRGAN have shown promise, there remains room for optimization and 
adaptation specific to medical nuances. 

The intertwining of deep learning with medical imaging has already 
started to redefine healthcare applications, especially with the rise of 
smart hospitals. As the next-generation healthcare transformation ac
celerates, it’s crucial that the medical community, together with AI re
searchers, focuses on enhancing these models further. Ensuring clarity, 
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accuracy, and reliability in medical images is not just a technical chal
lenge; it’s imperative for patient care. 

Our journey through this paper underlined the critical importance of 
high-resolution medical images, especially given the propensity of low- 
resolution images, often captured by IoT devices, to introduce biases 
into deep learning models. Such biases, when unchecked, have the po
tential to severely skew clinical decisions, ultimately affecting patient 
care. 

We delved into the world of super-resolution techniques, which, 
though employed extensively, still grapple with the challenge of 
achieving impeccable image restoration. In the realm of medical imag
ing, where precision is paramount, slight inaccuracies can significantly 
influence model training, which in turn has cascading impacts on clin
ical outcomes. Through our comprehensive review, we unearthed the 
limitations of existing methods and the notable absence of a targeted 
examination of the accuracy of image restoration in medical imaging. By 
examining the state-of-the-art models and their inherent challenges, we 
aimed to highlight the indispensable role of accurate and robust super- 
resolution methods in medical image enhancement. Such enhancements 
are pivotal not just for the immediate diagnostic process but also for 
bolstering the overall efficacy of deep learning models in healthcare 
applications. In hindsight, our survey provides a roadmap, charting both 
the accomplishments and the yet-to-be-explored avenues in the field of 
medical image restoration. As we move forward, it is evident that 
optimizing medical image restoration is not just a technological goal but 
a critical need for advancing healthcare outcomes. We remain hopeful 
that future research, spurred by the challenges and questions high
lighted in this survey, will drive innovations that will further bridge the 
gap between medical imaging and its optimal utilization in deep 
learning. 
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Vinod Diwan, Esa Rahtu, Matti Pietikäinen, Mikael Lundin, Johan Lundin, 
A malaria diagnostic tool based on computer vision screening and visualization of 
Plasmodium falciparum candidate areas in digitized blood smears, PLoS One 9 (8) 
(2014), e104855. 

[168] Lakpa Dorje Tamang, Byung-Wook Kim, Super-resolution ultrasound imaging 
scheme based on a symmetric series convolutional neural network, Sensors 22 (8) 
(2022) 3076. 

[169] Gutman, David, Noel CF Codella, Emre Celebi, Brian Helba, Michael Marchetti, 
Nabin Mishra, and Allan Halpern. "Skin lesion analysis toward melanoma 
detection: a challenge at the international symposium on biomedical imaging 
(ISBI) 2016, hosted by the international skin imaging collaboration (ISIC)." arXiv 
preprint arXiv:1605.01397 (2016). 

[170] Zhen Chen, Xiaoqing Guo, Peter YM Woo, Yixuan Yuan, Super-resolution 
enhanced medical image diagnosis with sample affinity interaction, IEEE Trans. 
Med. Imaging 40 (5) (2021) 1377–1389. 

[171] Fabio A. Spanhol, Luiz S. Oliveira, Caroline Petitjean, Laurent Heutte, A dataset 
for breast cancer histopathological image classification, IEEE Trans. Biomed. Eng. 
63 (7) (2015) 1455–1462. 

[172] McGinnis, Julian, Suprosanna Shit, Hongwei Bran Li, Vasiliki Sideri-Lampretsa, 
Robert Graf, Maik Dannecker, Jiazhen Pan et al. "Multi-contrast MRI Super- 
resolution via Implicit Neural Representations." arXiv preprint arXiv:2303.15065 
(2023). 

[173] Phoulady, Hady Ahmady, and Peter R. Mouton. "A new cervical cytology dataset 
for nucleus detection and image classification (Cervix93) and methods for 
cervical nucleus detection." arXiv preprint arXiv:1811.09651 (2018). 

[174] Bradley T. Wyman, Danielle J. Harvey, Karen Crawford, Matt A. Bernstein, 
Owen Carmichael, Patricia E. Cole, Paul K. Crane, et al., Standardization of 
analysis sets for reporting results from ADNI MRI data, Alzheimer’s Dementia 9 
(3) (2013) 332–337. 

[175] Ayan Sengupta, Renat Yakupov, Oliver Speck, Stefan Pollmann, Michael Hanke, 
Ultra high-field (7 T) multi-resolution fMRI data for orientation decoding in visual 
cortex, Data Brief 13 (2017) 219–222. 
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