Title

PSTR: End-to-End One-Step Person Search With Transformers

Document Type

Article

Publication Title

arXiv

Abstract

We propose a novel one-step transformer-based person search framework, PSTR, that jointly performs person detection and re-identification (re-id) in a single architecture. PSTR comprises a person search-specialized (PSS) module that contains a detection encoder-decoder for person detection along with a discriminative re-id decoder for person re-id. The discriminative re-id decoder utilizes a multi-level supervision scheme with a shared decoder for discriminative re-id feature learning and also comprises a part attention block to encode relationship between different parts of a person. We further introduce a simple multi-scale scheme to support re-id across person instances at different scales. PSTR jointly achieves the diverse objectives of object-level recognition (detection) and instance-level matching (re-id). To the best of our knowledge, we are the first to propose an end-to-end one-step transformer-based person search framework. Experiments are performed on two popular benchmarks: CUHK-SYSU and PRW. Our extensive ablations reveal the merits of the proposed contributions. Further, the proposed PSTR sets a new state-of-the-art on both benchmarks. On the challenging PRW benchmark, PSTR achieves a mean average precision (mAP) score of 56.5%. The source code is available at https://github.com/JialeCao001/PSTR. Copyright © 2022, The Authors. All rights reserved.

DOI

doi.org/10.48550/arXiv.2204.03340

Publication Date

4-7-2022

Keywords

Computer Vision and Pattern Recognition (cs.CV), Detection/identification, Encoder-decoder, End to end, Feature learning, Multi-scales, Multilevels, Person detection, Person re identifications, Re identifications, Simple++

Comments

IR Deposit conditions: non-described

Preprint available on arXiv

Share

COinS