Synthesizing the Unseen for Zero-Shot Object Detection

Nasir Hayat, Inception Institute of Artificial Intelligence
Munawar Hayat, Inception Institute of Artificial Intelligence & Mohamed bin Zayed University of Artificial Intelligence
Shafin Rahman, North South University, Dhaka, Bangladesh
Salman Khan, Inception Institute of Artificial Intelligence & Mohamed bin Zayed University of Artificial Intelligence
Syed Waqas Zamir, Inception Institute of Artificial Intelligence
Fahad Shahbaz Khan, Inception Institute of Artificial Intelligence & Mohamed bin Zayed University of Artificial Intelligence

Abstract

The existing zero-shot detection approaches project visual features to the semantic domain for seen objects, hoping to map unseen objects to their corresponding semantics during inference. However, since the unseen objects are never visualized during training, the detection model is skewed towards seen content, thereby labeling unseen as background or a seen class. In this work, we propose to synthesize visual features for unseen classes, so that the model learns both seen and unseen objects in the visual domain. Consequently, the major challenge becomes, how to accurately synthesize unseen objects merely using their class semantics? Towards this ambitious goal, we propose a novel generative model that uses class-semantics to not only generate the features but also to discriminatively separate them. Further, using a unified model, we ensure the synthesized features have high diversity that represents the intra-class differences and variable localization precision in the detected bounding boxes. We test our approach on three object detection benchmarks, PASCAL VOC, MSCOCO, and ILSVRC detection, under both conventional and generalized settings, showing impressive gains over the state-of-the-art methods. Our codes are available at https://github.com/nasir6/zero_shot_detection. © 2021, Springer Nature Switzerland AG.