Dispatching and Control Information Freshness-Aware Federated Learning for Simplified Power IoT
Document Type
Conference Proceeding
Publication Title
2022 IEEE Global Communications Conference, GLOBECOM 2022 - Proceedings
Abstract
Dispatching and control information freshness conducts an important impact on the training accuracy of distributed energy dispatching and control model. Poor information freshness will increase the loss function of the training model, and reduce the reliability and economy of dispatching and control. Simplified power internet of things can provide plug-and-play and multi- mode fusion communication support, but it still faces challenges of the coupling of model training and data transmission as well as the difficulty in guaranteeing dispatching and control information freshness. In this paper, a semi-distributed federated learning- based framework for dispatching and control model training decision-making is proposed, and a dispatching and control information freshness-aware batch size Optimization algorithm (CAROL) is presented. CAROL leverages deep Q network and dispatching and control information freshness awareness to learn the batch size optimization strategy. CAROL can minimize model loss function while guaranteeing long-term dispatching and control information freshness constraints. Compared with existing federated learning algorithms, CAROL achieves superior performance in global loss function and information freshness.© 2022 IEEE.
First Page
1097
Last Page
1102
DOI
10.1109/GLOBECOM48099.2022.10001183
Publication Date
1-11-2023
Keywords
Decision making, Electric load dispatching, Electric power transmission, Internet of things, Learning systems
Recommended Citation
Z. Jia et al., "Dispatching and Control Information Freshness-Aware Federated Learning for Simplified Power IoT," GLOBECOM 2022 - 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022, pp. 1097-1102, doi: 10.1109/GLOBECOM48099.2022.10001183.
Comments
IR conditions: non-described