Document Type


Publication Title

Journal of Medical Internet Research


Background: Publication of registered clinical trials is a critical step in the timely dissemination of trial findings. However, a significant proportion of completed clinical trials are never published, motivating the need to analyze the factors behind success or failure to publish. This could inform study design, help regulatory decision-making, and improve resource allocation. It could also enhance our understanding of bias in the publication of trials and publication trends based on the research direction or strength of the findings. Although the publication of clinical trials has been addressed in several descriptive studies at an aggregate level, there is a lack of research on the predictive analysis of a trial’s publishability given an individual (planned) clinical trial description. Objective: We aimed to conduct a study that combined structured and unstructured features relevant to publication status in a single predictive approach. Established natural language processing techniques as well as recent pretrained language models enabled us to incorporate information from the textual descriptions of clinical trials into a machine learning approach. We were particularly interested in whether and which textual features could improve the classification accuracy for publication outcomes. Methods: In this study, we used metadata from (a registry of clinical trials) and MEDLINE (a database of academic journal articles) to build a data set of clinical trials (N=76,950) that contained the description of a registered trial and its publication outcome (27,702/76,950, 36% published and 49,248/76,950, 64% unpublished). This is the largest data set of its kind, which we released as part of this work. The publication outcome in the data set was identified from MEDLINE based on clinical trial identifiers. We carried out a descriptive analysis and predicted the publication outcome using 2 approaches: a neural network with a large domain-specific language model and a random forest classifier using a weighted bag-of-words representation of text. Results: First, our analysis of the newly created data set corroborates several findings from the existing literature regarding attributes associated with a higher publication rate. Second, a crucial observation from our predictive modeling was that the addition of textual features (eg, eligibility criteria) offers consistent improvements over using only structured data (F1-score=0.62-0.64 vs F1-score=0.61 without textual features). Both pretrained language models and more basic word-based representations provide high-utility text representations, with no significant empirical difference between the two. Conclusions: Different factors affect the publication of a registered clinical trial. Our approach to predictive modeling combines heterogeneous features, both structured and unstructured. We show that methods from natural language processing can provide effective textual features to enable more accurate prediction of publication success, which has not been explored for this task previously.



Publication Date



clinical trials, machine learning, natural language processing, pretrained language models, publication success, study characteristics


Gold Open Access

Archived with thanks to JMIR

Preprint License: CC by 4.0

Uploaded 16 November 2023