Video transformer for deepfake detection with incremental learning
Document Type
Conference Proceeding
Publication Title
MM 2021 - Proceedings of the 29th ACM International Conference on Multimedia
Abstract
Face forgery by deepfake is widely spread over the internet and this raises severe societal concerns. In this paper, we propose a novel video transformer with incremental learning for detecting deepfake videos. To better align the input face images, we use a 3D face reconstruction method to generate UV texture from a single input face image. The aligned face image can also provide pose, eyes blink and mouth movement information that cannot be perceived in the UV texture image, so we use both face images and their UV texture maps to extract the image features. We present an incremental learning strategy to fine-tune the proposed model on a smaller amount of data and achieve better deepfake detection performance. The comprehensive experiments on various public deepfake datasets demonstrate that the proposed video transformer model with incremental learning achieves state-of-the-art performance in the deepfake video detection task with enhanced feature learning from the sequenced data.
First Page
1821
Last Page
1828
DOI
10.1145/3474085.3475332
Publication Date
10-17-2021
Keywords
deepfakes detection, face forensics, transformer, video analysis
Recommended Citation
S. Khan and H. Dai, "Video transformer for deepfake detection with incremental learning", in Proceedings of the 29th ACM International Conference on Multimedia, New York, 2021, pp. 1821-1828. Available: 10.1145/3474085.3475332.
Comments
IR Deposit conditions: non-described