CaRiNG: Learning Temporal Causal Representation under Non-Invertible Generation Process
Date of Award
4-30-2024
Document Type
Thesis
Degree Name
Master of Science in Machine Learning
Department
Machine Learning
First Advisor
Dr. Kun Zhang
Second Advisor
Dr. Martin Takac
Abstract
"Identifying the underlying time-delayed latent causal processes in sequential data is vital for grasping temporal dynamics and making downstream reasoning. While some recent methods can robustly identify these latent causal variables, they rely on strict assumptions about the invertible generation process from latent variables to observed data. However, these assumptions are often hard to satisfy in real-world applications containing information loss. For instance, the visual perception process translates a 3D space into 2D images, or the phenomenon of persistence of vision incorporates historical data into current perceptions. To address this challenge, we establish an identifiability theory that allows for the recovery of independent latent components even when they come from a nonlinear and non-invertible mix. Using this theory as a foundation, we propose a principled approach, \caring, to learn the \underline{\textbf{Ca}}usal \underline{\textbf{R}}epresentat\underline{\textbf{i}}on of \underline{\textbf{N}}on-invertible \underline{\textbf{G}}enerative temporal data with identifiability guarantees. Specifically, we utilize temporal context to recover lost latent information and apply the conditions in our theory to guide the training process. Through experiments conducted on synthetic datasets, we validate that our \ourmeos method reliably identifies the causal process, even when the generation process is non-invertible. Moreover, we demonstrate that our approach considerably improves temporal understanding and reasoning in practical applications."
Recommended Citation
Y. Shen, "CaRiNG: Learning Temporal Causal Representation under Non-Invertible Generation Process,", Apr 2024.
Comments
Thesis submitted to the Deanship of Graduate and Postdoctoral Studies
In partial fulfilment of the requirements for the M.Sc degree in Machine Learning
Advisors:Kun Zhang, Dr. Martin Takac
Online access available for MBZUAI patrons