SP2: A Second Order Stochastic Polyak Method

Document Type

Article

Publication Title

arXiv

Abstract

Recently the SP (Stochastic Polyak step size) method has emerged as a competitive adaptive method for setting the step sizes of SGD. SP can be interpreted as a method specialized to interpolated models, since it solves the interpolation equations. SP solves these equation by using local linearizations of the model. We take a step further and develop a method for solving the interpolation equations that uses the local second-order approximation of the model. Our resulting method SP2 uses Hessian-vector products to speed-up the convergence of SP. Furthermore, and rather uniquely among second-order methods, the design of SP2 in no way relies on positive definite Hessian matrices or convexity of the objective function. We show SP2 is very competitive on matrix completion, non-convex test problems and logistic regression. We also provide a convergence theory on sums-of-quadratics. Copyright © 2022, The Authors. All rights reserved.

DOI

10.48550/arXiv.2207.08171

Publication Date

7-17-2022

Keywords

Machine learning, Stochastic systems

Comments

IR Deposit conditions: non-described

Preprint available on arXiv

Share

COinS