Disease Prediction in Edge Computing: A Privacy-Preserving Technique for PHI Collection and Analysis

Document Type

Article

Publication Title

IEEE Network

Abstract

Edge computing has garnered significant attention in recent years, as it enables the extension of cloud resources to the network edge. This enables the user to utilize virtually enhanced resources in terms of storage and computation at a lower cost. The edge computing-assisted wireless wearable communication (EWWC) technology is a prime candidate for e-Health edge applications to collect personal health information (PHI), which leads to disease learning and prediction. Ensuring privacy and efficiency of such system in EWWC is extremely important. In this article, we introduce an efficient and privacypreserving disease prediction scheme. We use the randomizable signature and matrices encryption technique to achieve identity protection and data privacy. The experimental analysis shows that our solution outperforms the existing solution in terms of computational costs and communication overhead. At the same time is able to provide data privacy, prediction model security, user identity protection, mendacious data traceability, and model verifiability. We also analyze potential future research directions related to this emerging area. IEEE

First Page

1

Last Page

7

DOI

10.1109/MNET.001.1800162

Publication Date

8-8-2022

Keywords

Biomedical monitoring, Communication system security, Diseases, Security, Wearable computers, Wireless communication, Wireless sensor networks, Cost benefit analysis, Cryptography, Data privacy, Digital storage, Edge computing, Forecasting, Network security

Comments

IR Deposit conditions:

OA version (pathway a) Accepted version

No embargo

When accepted for publication, set statement to accompany deposit (see policy)

Must link to publisher version with DOI

Publisher copyright and source must be acknowledged

Share

COinS