Multiagent Deep Reinforcement Learning for Wireless-Powered UAV Networks
Document Type
Article
Publication Title
IEEE Internet of Things Journal
Abstract
Unmanned aerial vehicles (UAVs) have attracted much attention lately and are being used in a multitude of applications. But the duration of being in the sky remains to be an issue due to their energy limitation. In particular, this represents a major challenge when UAVs are used as base stations (BSs) to complement the wireless network. Therefore, as UAVs execute their missions in the sky, it becomes beneficial to wirelessly harvest energy from external and adjustable flying energy sources (FESs) to power their onboard batteries and avoid disrupting their trajectories. For this purpose, wireless power transfer (WPT) is seen as a promising charging technology to keep UAVs in flight and allow them to complete their missions. In this work, we leverage a multiagent deep reinforcement learning (MADRL) method to optimize the task of energy transfer between FESs and UAVs. The optimization is performed by carrying out three essential tasks: 1) maximizing the sum-energy received by all UAVs based on FESs using WPT; 2) optimizing the energy loading process of FESs from a ground BS; and 3) computing the most energy-efficient trajectories of the FESs while carrying out their charging duties. Furthermore, to ensure high-level reliability of energy transmission, we use directional energy transfer for charging both FESs and UAVs by using laser beams and energy beam-forming technologies, respectively. In this study, the simulation results show that the proposed MADRL method has efficiently optimized the trajectories and energy consumption of FESs, which translates into a significant energy transfer gain compared to the baseline strategies. © 2022 IEEE.
First Page
16044
Last Page
16059
DOI
10.1109/JIOT.2022.3150616
Publication Date
9-1-2022
Keywords
Deep reinforcement learning (DRL), wireless power transfer (WPT), Antennas, Deep learning, Energy efficiency, Energy harvesting, Energy utilization, Inductive power transmission, Internet of things, Laser beams, Multi agent systems, Reinforcement learning, Trajectories, Unmanned aerial vehicles (UAV), Wireless sensor networks
Recommended Citation
O. S. Oubbati, A. Lakas and M. Guizani, "Multiagent Deep Reinforcement Learning for Wireless-Powered UAV Networks," in IEEE Internet of Things Journal, vol. 9, no. 17, pp. 16044-16059, 1 Sept.1, 2022, doi: 10.1109/JIOT.2022.3150616.
Comments
IR Deposit conditions:
OA version (pathway a): Accepted version
No embargo
When accepted for publication, set statement to accompany deposit (see policy)
Must link to publisher version with DOI
Publisher copyright and source must be acknowledged