Toward Learning Robust and Invariant Representations with Alignment Regularization and Data Augmentation
Document Type
Conference Proceeding
Publication Title
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Abstract
Data augmentation has been proven to be an effective technique for developing machine learning models that are robust to known classes of distributional shifts (e.g., rotations of images), and alignment regularization is a technique often used together with data augmentation to further help the model learn representations invariant to the shifts used to augment the data. In this paper, motivated by a proliferation of options of alignment regularizations, we seek to evaluate the performances of several popular design choices along the dimensions of robustness and invariance, for which we introduce a new test procedure. Our synthetic experiment results speak to the benefits of squared "2 norm regularization. Further, we also formally analyze the behavior of alignment regularization to complement our empirical study under assumptions we consider realistic. Finally, we test this simple technique we identify (worst-case data augmentation with squared "2 norm alignment regularization) and show that the benefits of this method outrun those of the specially designed methods. We also release a software package in both TensorFlow and PyTorch for users to use the method with a couple of lines at https://github.com/jyanln/AlignReg. © 2022 Owner/Author.
First Page
1846
Last Page
1856
DOI
10.1145/3534678.3539438
Publication Date
8-14-2022
Keywords
data augmentation, machine learning, robustness, trustworthy, Testing
Recommended Citation
H. Wang, Z. Huang, X. Wu, and E.P. Xing, "Toward Learning Robust and Invariant Representations with Alignment Regularization and Data Augmentation", in Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '22), NY, USA, pp. 1846–1856. doi:10.1145/3534678.3539438
Comments
IR Deposit conditions: non-described