Document Type
Conference Proceeding
Publication Title
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Abstract
Human behavior has the nature of indeterminacy, which requires the pedestrian trajectory prediction system to model the multi-modality of future motion states. Unlike existing stochastic trajectory prediction methods which usually use a latent variable to represent multi-modality, we explicitly simulate the process of human motion variation from indeterminate to determinate. In this paper, we present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID), in which we progressively discard indeterminacy from all the walkable areas until reaching the desired trajectory. This process is learned with a parameterized Markov chain conditioned by the observed trajectories. We can adjust the length of the chain to control the degree of indeterminacy and balance the diversity and determinacy of the predictions. Specifically, we encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories. Extensive experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method. Code is available at https://github.com/gutianpei/MID.
First Page
17092
Last Page
17101
DOI
10.1109/CVPR52688.2022.01660
Publication Date
9-27-2022
Keywords
Navigation and autonomous driving
Recommended Citation
T. Gu et al., "Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion," 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 2022, pp. 17092-17101, doi: 10.1109/CVPR52688.2022.01660.
Additional Links
Link to IEEE paper: https://ieeexplore.ieee.org/document/9878855
Comments
Open Access version, provided by the Computer Vision Foundation.
Uploaded: January 18, 2023