Document Type
Article
Publication Title
IEEE Open Journal of the Communications Society
Abstract
Enabling accurate and automated identification of wireless devices is critical for allowing network access monitoring and ensuring data authentication for large-scale IoT networks. RF fingerprinting has emerged as a solution for device identification by leveraging the transmitters' inevitable hardware impairments that occur during manufacturing. Although deep learning is proven efficient in classifying devices based on hardware impairments, the performance of deep learning models suffers greatly from variations of the wireless channel conditions, across time and space. To the best of our knowledge, we are the first to propose leveraging MIMO capabilities to mitigate the channel effect and provide a channel-resilient device classification framework. We begin by showing that for AWGN channels, combining multiple received signals improves the testing accuracy by up to 30%. We then show that for more realistic Rayleigh channels, blind channel estimation enabled by MIMO increases the testing accuracy by up to 50% when the models are trained and tested over the same channel, and by up to 69% when the models are tested on a channel that is different from that used for training.
First Page
118
Last Page
133
DOI
10.1109/OJCOMS.2022.3233372
Publication Date
1-2-2023
Keywords
Automated network access, deep learning, IoT device fingerprinting, multiple-input multiple-out (MIMO)
Recommended Citation
N. Basha, B. Hamdaoui, K. Sivanesan and M. Guizani, "Channel-Resilient Deep-Learning-Driven Device Fingerprinting Through Multiple Data Streams," in IEEE Open Journal of the Communications Society, vol. 4, pp. 118-133, 2023, doi: 10.1109/OJCOMS.2022.3233372.
Comments
Archived with thanks to IEEE Open Journal of the Communications Society
Preprint License: CC by 4.0
Uploaded 21 March 2023