Blockchain-Empowered Resource Allocation in Multi-UAV-Enabled 5G-RAN: A Multi-agent Deep Reinforcement Learning Approach
Document Type
Article
Publication Title
IEEE Transactions on Cognitive Communications and Networking
Abstract
In 5G and B5G networks, real-time and secure resource allocation with the common telecom infrastructure is challenging. This problem may be more severe when mobile users are growing and connectivity is interrupted by natural disasters or other emergencies. To address the resource allocation problem, the network slicing technique has been applied to assign virtualized resources to multiple network slices, guaranteeing the 5G-RAN quality of service. Moreover, to tackle connectivity interruptions during emergencies, UAVs have been deployed as airborne base stations, providing various services to ground networks. However, this increases the complexity of resource allocation in the shared infrastructure of 5G-RAN. Therefore, this paper proposes a dynamic resource allocation framework that synergies blockchain and multi-agent deep reinforcement learning for multi-UAV-enabled 5G-RAN to allocate resources to smart mobile user equipment (SMUE) with optimal costs. The blockchain ensures the security of virtual resource transactions between SMUEs, infrastructure providers (InPs), and virtual network operators (VNOs). We formulate a virtualized resource allocation problem as a hierarchical Stackelberg game containing InPs, VNOs, and SMUEs, and then transform it into a stochastic game model. Then, we adopt a Multi-agent Deep Deterministic Policy Gradient (MADDPG) algorithm to solve the formulated problem and obtain the optimal resource allocation policies that maximize the utility function. The simulation results show that the MADDPG method outperforms the state-of-the-art methods in terms of utility optimization and quality of service satisfaction.
First Page
1
Last Page
1
DOI
10.1109/TCCN.2023.3262242
Publication Date
3-27-2023
Keywords
5G mobile communication, 5G-RAN, Blockchain, Blockchains, Games, III-V semiconductor materials, Indium phosphide, Multi-agent DRL, Network slicing, Resource management, Security, Stackelberg game, Virtualization
Recommended Citation
A. M. Seid, A. Erbad, H. N. Abishu, A. Albaseer, M. Abdallah and M. Guizani, "Blockchain-Empowered Resource Allocation in Multi-UAV-Enabled 5G-RAN: A Multi-agent Deep Reinforcement Learning Approach," in IEEE Transactions on Cognitive Communications and Networking, pp. 1-1, Mar 2023, doi: 10.1109/TCCN.2023.3262242.
Comments
IR Deposit conditions:
OA version (pathway a) Accepted version
No embargo
When accepted for publication, set statement to accompany deposit (see policy)
Must link to publisher version with DOI
Publisher copyright and source must be acknowledged