Document Type

Conference Proceeding

Publication Title

Proceedings of the Annual Meeting of the Association for Computational Linguistics

Abstract

Large-scale pre-trained language models such as BERT are popular solutions for text classification. Due to the superior performance of these advanced methods, nowadays, people often directly train them for a few epochs and deploy the obtained model. In this opinion paper, we point out that this way may only sometimes get satisfactory results. We argue the importance of running a simple baseline like linear classifiers on bag-of-words features along with advanced methods. First, for many text data, linear methods show competitive performance, high efficiency, and robustness. Second, advanced models such as BERT may only achieve the best results if properly applied. Simple baselines help to confirm whether the results of advanced models are acceptable. Our experimental results fully support these points.

First Page

1876

Last Page

1888

DOI

10.18653/v1/2023.acl-short.160

Publication Date

7-2023

Keywords

Computational linguistics, Text processing

Comments

Archived with thanks to ACL Anthology

License: CC by 4.0 DEED

Uploaded 23 January 2024

Share

COinS