Document Type
Conference Proceeding
Publication Title
Proceedings of the Annual Meeting of the Association for Computational Linguistics
Abstract
Large-scale pre-trained language models such as BERT are popular solutions for text classification. Due to the superior performance of these advanced methods, nowadays, people often directly train them for a few epochs and deploy the obtained model. In this opinion paper, we point out that this way may only sometimes get satisfactory results. We argue the importance of running a simple baseline like linear classifiers on bag-of-words features along with advanced methods. First, for many text data, linear methods show competitive performance, high efficiency, and robustness. Second, advanced models such as BERT may only achieve the best results if properly applied. Simple baselines help to confirm whether the results of advanced models are acceptable. Our experimental results fully support these points.
First Page
1876
Last Page
1888
DOI
10.18653/v1/2023.acl-short.160
Publication Date
7-2023
Keywords
Computational linguistics, Text processing
Recommended Citation
Y.C. Lin, S.A. Chen, J.J. Liu, and C.J. Lin, "Linear Classifier: An Often-Forgotten Baseline for Text Classification", In Proceedings of the 61st Annual Meeting of the Assoc. for Comp. Linguistics, ACL, vol 2: Short Papers, pp. 1876–1888, July 2023. doi:10.18653/v1/2023.acl-short.160
Comments
Archived with thanks to ACL Anthology
License: CC by 4.0 DEED
Uploaded 23 January 2024