Document Type
Conference Proceeding
Publication Title
ICLR 2021 - 9th International Conference on Learning Representations
Abstract
Optimizing molecules for desired properties is a fundamental yet challenging task in chemistry, material science, and drug discovery. This paper develops a novel algorithm for optimizing molecular properties via an Expectation-Maximization (EM) like explainable evolutionary process. The algorithm is designed to mimic human experts in the process of searching for desirable molecules and alternate between two stages: the first stage on explainable local search which identifies rationales, i.e., critical subgraph patterns accounting for desired molecular properties, and the second stage on molecule completion which explores the larger space of molecules containing good rationales. We test our approach against various baselines on a real-world multi-property optimization task where each method is given the same number of queries to the property oracle. We show that our evolution-by-explanation algorithm is 79% better than the best baseline in terms of a generic metric combining aspects such as success rate, novelty, and diversity. Human expert evaluation on optimized molecules shows that 60% of top molecules obtained from our methods are deemed successful.
Publication Date
1-12-2021
Keywords
Evolutionary algorithms, Maximum principle, Optimization
Recommended Citation
B. Chen, T. Wang, C. Li, H. Dai, and L. Song, "Molecule Optimization by Explainable Evolution", in 9th Intl. Conf. on Learning Representations (ICLR 2021), 2021.
Additional Links
OpenReview.net link: https://openreview.net/forum?id=jHefDGsorp5
Comments
IR conditions: non-described