Optimized Multi-User Dependent Tasks Offloading in Edge-Cloud Computing Using Refined Whale Optimization Algorithm

Document Type

Article

Publication Title

IEEE Transactions on Sustainable Computing

Abstract

despite the extensive use of IoT and mobile devices in the different applications, their computing power, memory, and battery life are still limited. Multi-Access Edge Computing (MEC) has recently emerged to address the drawbacks of these limitations. With MEC on the network's edge, mobile and IoT devices can offload their computing operations to adjacent edge servers or remote cloud servers. However, task offloading is still a challenging research issue, and it is necessary to improve the overall Quality of Service (QoS) and attain optimized performance and resource utilization. Another crucial issue that is usually overlooked while handling this issue is offloading an application that consists of dependent tasks. In this study, we suggest a Refined Whale Optimization Algorithm (RWOA) for solving the multiuser dependent tasks offloading problem in the Edge-Cloud computing environment with three objectives: 1- minimizing application execution latency, 2- minimizing the energy consumption of end devices, and 3- the charging cost for used resources. We also avoid the traditional binary planning mechanisms by allowing each task to be partially processed simultaneously at three processing locations (local device, MEC, cloud). We compare RWOA with the other Optimizers, and the results demonstrate the RWOA's superiority.

First Page

1

Last Page

18

DOI

10.1109/TSUSC.2023.3294447

Publication Date

7-11-2023

Keywords

Cloud computing, cloud computing, Costs, Energy consumption, Internet of Things, Multi-access edge computing, multi-objective computational offloading, multi-user scenario, Servers, Task analysis, task dependency, whale optimization algorithm, Whale optimization algorithms

Comments

IR Deposit conditions:

OA version (pathway a) Accepted version

No embargo

When accepted for publication, set statement to accompany deposit (see policy)

Must link to publisher version with DOI

Publisher copyright and source must be acknowledged

Share

COinS