Pixel-level non-local image smoothing with objective evaluation

Document Type

Article

Publication Title

IEEE Transactions on Multimedia

Abstract

Recently, image smoothing has gained increasing attention due to its prerequisite role in other image processing tasks, e.g., image enhancement and editing. However, the evaluation of image smoothing algorithms is usually performed by subjective observation on images without corresponding ground truths. To promote the development of image smoothing algorithms, in this paper, we construct a novel Nankai Smoothing (NKS) dataset containing 200 images blended by versatile structure images and natural textures. The structure images are inherently smooth and naturally taken as ground truths. On our NKS dataset, we comprehensively evaluate 14 popular image smoothing algorithms. Moreover, we propose a Pixel-level Non-Local Smoothing (PNLS) method to well preserve the structure of the smoothed images, by exploiting the pixel-level non-local self-similarity prior of natural images. Extensive experiments on several benchmark datasets demonstrate that our PNLS outperforms previous algorithms on the image smoothing task. Ablation studies also reveal the work mechanism of our PNLS on image smoothing. To further show its effectiveness, we apply our PNLS on several applications such as semantic region smoothing, detail/edge enhancement, and image abstraction. The dataset and code are available at https://github.com/zal0302/PNLS.

First Page

4065

Last Page

4078

DOI

10.1109/TMM.2020.3037535

Publication Date

11-11-2020

Keywords

Benchmark dataset, Image smoothing, Performance evaluation, Pixel-level non-local self similarity

Comments

IR Deposit conditions:

OA version (pathway a) Accepted version

No embargo

When accepted for publication, set statement to accompany deposit (see policy)

Must link to publisher version with DOI

Publisher copyright and source must be acknowledged

Share

COinS