Unsupervised Domain Adaptation with Noise Resistible Mutual-Training for Person Re-identification
Document Type
Conference Proceeding
Publication Title
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
Unsupervised domain adaptation (UDA) in the task of person re-identification (re-ID) is highly challenging due to large domain divergence and no class overlap between domains. Pseudo-label based self-training is one of the representative techniques to address UDA. However, label noise caused by unsupervised clustering is always a trouble to self-training methods. To depress noises in pseudo-labels, this paper proposes a Noise Resistible Mutual-Training (NRMT) method, which maintains two networks during training to perform collaborative clustering and mutual instance selection. On one hand, collaborative clustering eases the fitting to noisy instances by allowing the two networks to use pseudo-labels provided by each other as an additional supervision. On the other hand, mutual instance selection further selects reliable and informative instances for training according to the peer-confidence and relationship disagreement of the networks. Extensive experiments demonstrate that the proposed method outperforms the state-of-the-art UDA methods for person re-ID.
First Page
526
Last Page
544
DOI
10.1007/978-3-030-58621-8_31
Publication Date
11-27-2020
Keywords
Collaborative clustering, Mutual instance selection, Person re-identification, Unsupervised domain adaptation
Recommended Citation
F. Zhao et al., “Unsupervised domain adaptation with noise resistible mutual-training for person re-identification,” Computer Vision – ECCV 2020, pp. 526–544, Nov 2020. doi:10.1007/978-3-030-58621-8_31
Comments
IR conditions: non-described
Access available for accepted version on ECVA