Scientific discovery in the age of artificial intelligence
Document Type
Article
Publication Title
Nature
Abstract
Artificial intelligence (AI) is being increasingly integrated into scientific discovery to augment and accelerate research, helping scientists to generate hypotheses, design experiments, collect and interpret large datasets, and gain insights that might not have been possible using traditional scientific methods alone. Here we examine breakthroughs over the past decade that include self-supervised learning, which allows models to be trained on vast amounts of unlabelled data, and geometric deep learning, which leverages knowledge about the structure of scientific data to enhance model accuracy and efficiency. Generative AI methods can create designs, such as small-molecule drugs and proteins, by analysing diverse data modalities, including images and sequences. We discuss how these methods can help scientists throughout the scientific process and the central issues that remain despite such advances. Both developers and users of AI toolsneed a better understanding of when such approaches need improvement, and challenges posed by poor data quality and stewardship remain. These issues cut across scientific disciplines and require developing foundational algorithmic approaches that can contribute to scientific understanding or acquire it autonomously, making them critical areas of focus for AI innovation.
First Page
47
Last Page
60
DOI
10.1038/s41586-023-06221-2
Publication Date
8-3-2023
Keywords
Artificial intelligence, Data quality, Accuracy assessment, Experimental design
Recommended Citation
H. Wang et al., "Scientific discovery in the age of artificial intelligence," Nature, vol. 620, no. 7972, pp. 47 - 60, Aug 2023. doi: 10.1038/s41586-023-06221-2
Comments
IR conditions: non-described