Document Type
Conference Proceeding
Publication Title
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Abstract
Masked autoencoder (MAE), a simple and effective self-supervised learning framework based on the reconstruction of masked image regions, has recently achieved prominent success in a variety of vision tasks. Despite the emergence of intriguing empirical observations on MAE, a theoretically principled understanding is still lacking. In this work, we formally characterize and justify existing empirical in-sights and provide theoretical guarantees of MAE. We formulate the underlying data-generating process as a hierarchical latent variable model, and show that under reasonable assumptions, MAE provably identifies a set of latent variables in the hierarchical model, explaining why MAE can extract high-level information from pixels. Further, we show how key hyperparameters in MAE (the masking ratio and the patch size) determine which true latent variables to be recovered, therefore influencing the level of semantic information in the representation. Specifically, extremely large or small masking ratios inevitably lead to low-level representations. Our theory offers coherent explanations of existing empirical observations and provides insights for potential empirical improvements and fundamental limitations of the masked-reconstruction paradigm. We conduct extensive experiments to validate our theoretical insights.
First Page
7918
Last Page
7928
DOI
10.1109/CVPR52729.2023.00765
Publication Date
6-2023
Keywords
Computer vision, Semantics, Self-supervised learning, Data mining, Task analysis, Image reconstruction
Recommended Citation
L. Kong et al., "Understanding Masked Autoencoders via Hierarchical Latent Variable Models," 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 2023, pp. 7918-7928, doi: 10.1109/CVPR52729.2023.00765.
Comments
Preprint version from arXiv
Uploaded on June 20, 2024