Computation Time Minimized Offloading in NOMA-enabled Wireless Powered Mobile Edge Computing

Document Type

Article

Publication Title

IEEE Transactions on Communications

Abstract

Wireless powered mobile edge computing (WP-MEC), which combines mobile edge computing (MEC) and wireless power transfer (WPT), is a promising paradigm for coping with the computing power and energy constraints of wireless devices. However, how to realize the online optimal offloading decision and resource allocation in the WP-MEC system is very challenging. This paper studies the system computation completion time (SCCT) minimization problems for WP-MEC networks using non-orthogonal multiple access (NOMA) communication under binary and partial offloading modes. Due to the complexity of the optimization problems and the time-varying nature of the channel state information, we decouple the original problems into a top-problem of optimizing WPT duration and a sub-problem of optimizing resource allocation, and then propose a convolutional deep reinforcement learning online (CDRO) algorithm. For the top-problem, a deep reinforcement learning framework is used to obtain the near-optimal WPT duration, and an incremental exploration policy is designed to balance the exploration accuracy and exploration range to improve the convergence performance of the CDRO algorithm. For the sub-problems, we propose their corresponding low-complexity algorithms based on in-depth analysis and derivation of the optimal offloading decision’s properties. Finally, numerical results show that the proposed CDRO algorithm achieves near-optimal SCCT with low computational complexity, enabling online decision-making in time-varying channel environments.

DOI

10.1109/TCOMM.2024.3405316

Publication Date

1-1-2024

Keywords

deep reinforcement learning, Energy consumption, Mobile edge computing, NOMA, Optimization, Resource management, Servers, system computation completion time, Task analysis, Wireless communication, wireless power transfer

This document is currently not available here.

Share

COinS