DOLPHIN: A Challenging and Diverse Benchmark for Arabic NLG

Document Type

Conference Proceeding

Publication Title

Findings of the Association for Computational Linguistics: EMNLP 2023

Abstract

We present Dolphin, a novel benchmark that addresses the need for a natural language generation (NLG) evaluation framework dedicated to the wide collection of Arabic languages and varieties. The proposed benchmark encompasses a broad range of 13 different NLG tasks, including dialogue generation, question answering, machine translation, summarization, among others. Dolphin comprises a substantial corpus of 40 diverse and representative public datasets across 50 test splits, carefully curated to reflect real-world scenarios and the linguistic richness of Arabic. It sets a new standard for evaluating the performance and generalization capabilities of Arabic and multilingual models, promising to enable researchers to push the boundaries of current methodologies. We provide an extensive analysis of Dolphin, highlighting its diversity and identifying gaps in current Arabic NLG research. We also offer a public leaderboard that is both interactive and modular and evaluate several models on our benchmark, allowing us to set strong baselines against which researchers can compare.

First Page

1404

Last Page

1422

Publication Date

1-1-2023

This document is currently not available here.

Share

COinS